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Abstract

Starting without any topological assumption, we establish the existence of the universal
type structure in presence of—possibly uncountably many and topologically unrestricted—
conditioning events, namely, a type structure that is non-redundant, belief-complete, terminal,
and unique up to measurable type isomorphism, by performing a construction in the spirit
of the hierarchical one in Heifetz & Samet (1998). In particular, we obtain the result by ex-
ploiting arguments from category theory and the theory of coalgebras, thus, making explicit
the mathematical structure underlying all the constructions of large interactive structures and
obtaining the belief-completeness of the structure (unattainable via the standard hierarchi-
cal construction à la Heifetz & Samet (1998)) as an immediate corollary of known results
from these fields. Additionally, we show how our construction, with its lack of topological
and cardinality assumptions on the family of conditioning events, can be employed in various
game-theoretical contexts.
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“Before category theory was invented it had been noted in some parts of mathematics that from some
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1. Introduction

1.1 Motivation & Results

Type structures are one of the most widely employed tools in theoretical economics. Introduced
in Harsanyi (1967) to handle the technical problems arising from the infinite regress proper of the
analysis of games with incomplete information, their usage ranges from applied issues, such as
those tackled by mechanism design, to more foundational problems, as exemplified by those works
belonging to epistemic game theory.1

In the context of type structures, a particular role is played by those type structures that
satisfy what can be deemed ‘large’ properties, which are typically captured via the so-called notion
of universality.2 Intuitively, the Universal Type Structure, where the usage of the definite article
comes from the fact that the construct is essentially unique, is a particular type structure that
contains all the possible types that can arise given a certain domain of uncertainty. Thus, it is
immediate to see the importance of this notion in the fields mentioned above, as—for example—
pointed out in Bergemann & Morris (2012, Section 3): employing the Universal Type Structure
allows the analyst to drop all at once the possible a priori assumptions that can be forced upon
a game-theoretical analysis by employing smaller type structures, since, in the evocative words of
Aumann & Heifetz (2002, Section 8, pp.1672–1673),

“The system does not depend on reality; it is a framework, it fits any reality, so to
speak, like the frames that one buys in photo shops, which do not depend on who is in
the photo and they fit any photo with any subject, as long as the size is right. In brief,
there is no substantive information in the system.”

In other words, the usage of smaller type structures forces upon a game-theoretical analysis certain
restrictions by a fortiori ruling out some possible beliefs, i.e., contrary to the universal one, there
is “substantive information in the system” when such a system is a ‘small’ type structure—even if
the substantive information is present somewhat implicitly.

Thus, working with the Universal Type Structure is a considerable step further in dropping
involuntary—and non-explicit—assumptions that could limit game-theoretical analysis: as such,
employing the Universal Type Structure is—for example—a typical (even if admittedly extreme)
step when an analyst wants to relax common knowledge assumptions in the spirit of the so-called
Wilson’s doctrine as in Wilson (1987). However, there is another way in which potential non-
explicit assumptions could arise even when using the Universal Type Structure, namely, when the
Universal Type Structure is built from topological assumptions. Indeed, in such a case, it is most
natural to ask ourselves if the results we obtain from a given analysis are the consequence of the
very topological assumptions needed to built the Universal Type Structure employed. Thus, it
is in this context that topology-free constructions of Universal Type Structures happen to derive
their importance: they are constructs that can be used to perform analyses robust to topological
details and can provide a conceptual foundation for the topological constructions.

For the ‘standard’ case appropriate to deal with—for example—static games, the construction
of the Universal Type Structure has been obtained in Heifetz & Samet (1998). Rather crucially,
this work did not follow the standard procedure based on the construction of coherent infinite
hierarchies of beliefs (i.e., infinite hierarchies of beliefs satisfying a coherency requirement across
different belief orders) as performed when starting from topological assumptions, in the spirit of
Mertens & Zamir (1985) or Brandenburger & Dekel (1993).3 Indeed, this was a consequence of the
striking result obtained in Heifetz & Samet (1999), who showed that, when we drop topological
assumptions, we lose the equivalence between types (as coherent infinite hierarchies of beliefs that
admit an extension to the limit) and coherent infinite hierarchies of beliefs and there are coherent
infinite hierarchies of beliefs that are actually not types. As a consequence, the approach taken in
Heifetz & Samet (1998), based on taking types belonging to ‘small’ type structures as ready-made
objects to then collect all of them in a large type structure, had an undesirable side-effect. That
is, the obtained construct had two out of the three properties attached to the idea of universality,

1Regarding epistemic game theory, see the survey Dekel & Siniscalchi (2015), or the two textbooks Perea (2012)
and Battigalli et al. (Work in Progress), completely devoted to the topic.

2See Section 3.4 for the definition we employ in this work and Section 5.2.3 with respect to how the term is used
in the literature.

3See also Armbruster & Böge (1979), Heifetz (1993), and Mertens et al. (2015, Chapter A.III.1).
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namely, terminality (capturing the very idea of collecting all those types in the same large structure)
and non-redundancy: the remaining property, namely, belief-completeness, particularly desirable
for epistemic endeavours, had to be established in Meier (2012) by employing tools from infinitary
probability logic.4

In the present work, we build the Universal Type Structure with conditioning events without
topological assumptions, thus, extending the work of Heifetz & Samet (1998) to the presence of
conditioning events and the work of Battigalli & Siniscalchi (1999), that constructed the Universal
Type Structure à la Brandenburger & Dekel (1993) starting from a Polish common domain of
uncertainty to deal with the presence of conditioning events, to a topology-free setting. Inciden-
tally, by obtaining our result, we prove true a conjecture made in Battigalli & Siniscalchi (1999,
Section 2, p.198) regarding the possibility of performing a construction à la Heifetz & Samet
(1998) for type structures with conditioning events. However, whereas to obtain the result we
follow the construction performed in Heifetz & Samet (1998), at the same time, we actually take a
more general approach, relying on tools from category theory and the theory of coalgebras (duly
introduced in Section 2.2). In taking this path, built on work by Viglizzo (2005b),5 where a coal-
gebraic analog of Heifetz & Samet (1998) for the case without conditioning events is derived, we
obtain in Theorem 1 all at once the three universality properties of our resulting construct, which
is—indeed—non-redundant, belief-complete, and terminal (and unique up to—measurable—type
isomorphism).6

With respect to the tools chosen to obtain our result, it is important to stress one point: there
is no ‘shortcut’ to get all the relevant universality properties at once in the topology-free case via a
construction that does not involve a certain level of ‘technicalities’. Indeed, as pointed out above, it
is the construction in Meier (2012) that actually established for the first time the universality of the
construction in Heifetz & Samet (1998) by—among other things—proving its belief-completeness
by employing tools from infinitary probability logic, with Viglizzo (2005b) being an alternative
based on category theoretical and coalgebraic tools. Thus, in order to establish the universality
in the topology-free case, either we choose Scylla or Charybdis, i.e., either we pick tools from
infinitary probability logic or we choose the category theoretical and coalgebraic approach:7 the
standard construction of Heifetz & Samet (1998) does not automatically deliver everything we
would like to get with belief-completeness being the missing ingredient.8

Thus, to establish this result, we employ the following strategy. First of all, in Section 4.1, we
bypass the presence of interactive agents and we show that there is essentially a basic mathematical
structure underlying the very notion of type structure (in presence of conditioning events), namely,
a coalgebra (as in Definition 2.5). As a result, we establish the existence of a terminal coalgebra in
Proposition 2. Armed with this result, in Section 4.2, we tackle the presence of interactive agents
and we show that the main bulk of the endeavour has already been established, since a minimal
change allows us to obtain Proposition 3, which is a translation of Theorem 1 in coalgebraic terms
as set in Proposition 2, with the caveat that we now take care of the presence of interactive agents.
Finally, in Section 4.3, we show that type structures are indeed coalgebras as defined in Section 4.2,
thus, exploiting Proposition 3 to establish Theorem 1 essentially as its immediate corollary. It
is important to underline that, to proceed along the lines just described, we closely follow the
path and the proofs in Viglizzo (2005b) (reproduced here with our notation for self-containment
purposes), in themselves—as already mentioned—a translation in coalgebraic terms of those in
Heifetz & Samet (1998). Hence, from a technical standpoint, the crucial innovation of this paper
lies in identifying the specific properties of the mathematical constructs we have to work with (i.e.,
product conditional measurable spaces sharing a family of conditioning events as in Definition 2.3),
a point which has an immediate impact on the peculiarities of the categorical construct (i.e., the
functor) we have to work with and on the proofs of all these results that explicitly refer to the
presence of conditioning events, that are the ‘new’ ones with respect to Viglizzo (2005b).

4See Section 5.2.2 for a discussion of the result and the path chosen to establish it.
5See Lawvere (1962) and Giry (1982) for the first works addressing measure and probability spaces from a

categorical standpoint.
6See Section 5.2.3 regarding the notion of universality we employ and its relation to terminality and the other

notions mentioned above.
7With the understanding that the disjunction is used here in an inclusive sense: i.e., it is possible to work with

coalgebraic modal logic. See Section 5.2.2 for a discussion of this point.
8Where, in particular, what is missing is that the belief functions are isomorphisms in the appropriate category

under scrutiny. See Section 5.2.3 concerning this point.
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Now, taking a very general view of the matter, it is important to stress that we see this work
as having two main applications.

The first concerns the result itself and how it can be used in game theory. Thus, in general,
beyond being the reference framework for Bergemann & Morris (2005, Section 2.5), it should
be observed that the construct obtained in Heifetz & Samet (1998) has been used to obtain the
epistemic characterization of Interim Correlated Rationalizability as in Dekel et al. (2007, Section
4.1) and to study Rationalizability in games with incomplete information in general as in Battigalli
et al. (2011, Section 1.3). Hence, Theorem 1 (and the construction obtained here more in general)
can provide the ground for similar works—in the spirit of Penta (2015) and Müller (2016)—where
there is the need to drop topological assumptions by also taking into account the presence of
conditioning events possibly without any restriction, either topological or cardinal, on the nature
of them. More specifically, in Section 6 we provide examples of game-theoretical endeavours where
our result, with its lack of topological or cardinality assumptions regarding the conditioning events
can prove to be particularly useful. Thus, for example, in Section 6.1 we show how the lack
of topological assumptions can play a role in psychological game theory,9 which is a field where
dynamic strategic interactions are a major topic of analysis10 and infinite hierarchies of beliefs
built on them are of special importance in light of the fact that the utility functions of the players
depend on—possibly higher order—beliefs of their co-players.

The second application, that we consider as important and potentially far-reaching as the
previous one, concerns the introduction of the tools we employ to an ‘economics’ audience. Indeed,
whereas category theory and the theory of coalgebras can be used directly to tackle specific technical
and conceptual problems belonging to economic theory, as we do here and it has already been done
in works referenced in Section 1.2, those fields can both prove to be extremely useful in a more
indirect way. To see this, first of all, it is important to recognize, in the words of Leinster (2014,
Introduction, p.1), that

“Category theory takes a bird’s eye view of mathematics. From high in the sky, details
become invisible, but we can spot patterns that were impossible to detect from ground
level.”

Thus, it is possible to use category theory in an indirect—heuristic—fashion. Here, we refer to the
fact that being acquainted to the categorical language and its results could in principle allow to see
patterns “from high in the sky”; this, in turn, could allow to conjecture certain solutions to specific
problems proper of economic theory exactly via the fact that those solutions would be proper of
more general settings, as showed via results in category theory. In other words, observing that
something is true for many different categories all sharing certain ‘nice’ properties could prove to
be useful to deal with specific problems, once the right category to address these problems has
been identified and it turns out that this category has those very same ‘nice’ properties. And here
one interesting point is in order: this heuristic process should not ask to write results using the
categorical language, which could potentially remain in the background.

1.2 Related Literature

This work is related to various streams of literature. Of course, it is related to the literature
focusing on the existence of large type structure, most notably Heifetz & Samet (1998), in working
in a topology-free setting, Battigalli & Siniscalchi (1999), in addressing the presence of conditioning
events, Meier (2012), in dealing with the problem of belief-completeness, and Viglizzo (2005b), for
the tools employed. In using machinery from category theory, it is related to an emerging literature
in economic theory that employs these tools, such as Heinsalu (2014), de Oliveira (2018), Galeazzi
& Marti (2023), Pivato (2024a), Pivato (2024b), and Pivato (Work in Progress). Also, regarding
the usage of coalgebras,11 it is related to Moss & Viglizzo (2004) and—in particular, once more—
Viglizzo (2005b),12 along with the aforementioned Heinsalu (2014), Galeazzi & Marti (2023), and
Pivato (2024b), and unpublished work by Davide Ferri.13

9See Battigalli & Dufwenberg (2022) for a survey of the literature.
10See Battigalli & Dufwenberg (2009) with respect to this point.
11Heifetz (1996) is a paper that should be—indirectly—related to this stream of literature via its relation with

Aczel (1988), where it is possible to find in Chapter 7 an explicit construction such as the one in Section 4.1.
12See also Viglizzo (2005a), Moss & Viglizzo (2006), and Moss (2011).
13As an M.Sc. thesis at Bocconi University, starting from topological assumptions (in particular, starting from a

Polish common domain of uncertainty as in Battigalli & Siniscalchi (1999)—personal communication).
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1.3 Synopsis

This paper is organized as follows. In Section 2, we introduce the mathematical notions from
measure theory and the theory of coalgebras we need for our endeavour. In Section 3, we introduce
type structures along with related notions. In Section 4, we prove the existence of the topology-free
universal type structure with conditioning events, while in Section 5 we address some points related
to our result and we discuss the relation between the present work and various works belonging
to the same stream of literature. Finally, in Section 6, we show various contexts where this object
can be used. Regarding the appendices, we devote Appendix A to a self-contained introduction to
the notions from category theory needed for our purposes, we collect results from measure theory
we employ to establish the universality in Appendix B, whereas we relegate to Appendix C all the
proofs of our results that cannot be found in the main body of this work.

2. Mathematical Preliminaries

2.1 Measure Theory

Let (M,ΣM ) be a measurable space, that is, a set M endowed with a σ-algebra ΣM : in the
following, whenever we refer to a set M as a measurable space without explicitly denoting its σ-
algebra, it is assumed thatM is endowed with a σ-algebra ΣM . Given a measurable space (M,ΣM ),
the σ-algebra ΣM is separative if for every x, x′ ∈ M with x 6= x′ there exists an Ex ∈ ΣM such
that x ∈ Ex and x′ /∈ Ex. We let every (finite or countably infinite) product of measurable spaces
be endowed with the product σ-algebra,14 i.e., given an arbitrary product space M :=

∏
λ∈ΛMλ

with (Mλ,Σλ) measurable and πλ denoting the projection function as canonically defined over the
index set Λ, for every λ ∈ Λ, we endow M with the product σ-algebra⊗

λ∈Λ

Σλ := σ
( {

π−1
λ (E)

∣∣ λ ∈ Λ, E ∈ Σλ
} )
,

where we—alternatively—denote this σ-algebra with
⊗

λ∈Λ Σλ (as we do above) or Σ∏
λ∈Λ Mλ

.
Given a measurable space (M ′,ΣM ′), a set M , and a function f ∈ M ′

M , we let σ(f) denote
the smallest σ-algebra on M that makes f measurable. A measurable isomorphism between two
measurable spaces (M,ΣM ) and (M ′,ΣM ′) is a bijective measurable function f ∈M ′M such that
f(E) ∈ ΣM ′ for every E ∈ ΣM and f−1(E′) ∈ ΣM for every E′ ∈ ΣM ′ , where—to lighten the
notation—we typically omit the reference to the σ-algebras that make a function measurable. Also,
given an arbitrary set M , we let idM denote the identity function on M , which is—trivially—a
measurable isomorphism whenever M is a measurable space.

We let ∆(M) denote the set of all σ-additive probability measures over M (henceforth, prob-
ability measures). Given a measurable space (M,ΣM ) and a possibly uncountable15 subset CM ⊆
ΣM \ {∅} of conditioning events, we call the space (M,ΣM , CM ) a conditional measurable space.

Definition 2.1 (Conditional Probability System). A conditional probability system16 (hence-
forth, CPS) on a conditional measurable space (M,ΣM , CM ) is a function

ν(·|·) : ΣM × CM → [0, 1]

that satisfies the following axioms:

C1. For every C ∈ CM , ν(C|C) = 1;

C2. For every C ∈ CM , ν(·|C) ∈ ∆(M);

C3. For every E ∈ ΣM and D,C ∈ CM , if E ⊆ D ⊆ C, then ν(E|C) = ν(E|D) · ν(D|C).
14See Srivastava (1998, Chapter 3.1, p.87).
15See Section 5.1.3 for a discussion of this point.
16This corresponds to one of the primitive elements of a conditional probability space of Rênyi (1955, Sections 1.2

& 1.4). However, the name—that eventually stuck in the game-theoretic literature—actually comes from a related
definition from Myerson (1986, Section 5, pp.336–337). See Hammond (1994, Section 3.2) for a discussion of the
relation between these two notions.

6



We let [∆(M)]CM denote the set of all functions from CM to ∆(M), while we let ∆CM (M) ⊆
[∆(M)]CM denote the set of CPSs on (M,ΣM , CM ), with ν :=

(
ν(·|C)

)
C∈CM

∈ ∆CM (M). We let

γpC(E) :=
{
ν ∈ ∆CM (M)

∣∣ ν(E|C) ≥ p
}
,

for every E ∈ ΣM , C ∈ CM , and p ∈ [0, 1].

Definition 2.2 (σ-Algebra on the Space of CPSs). Given a conditional measurable space
(M,ΣM , CM ), the space ∆CM (M) is endowed with the σ-algebra17

Σ∆CM (M) := σ
(
{ γpC(E) | E ∈ ΣM , C ∈ CM , p ∈ [0, 1] }

)
. (2.1)

Given a conditional measurable space (M,ΣM , CM ), in this paper, we focus on a specific family
of spaces tightly linked to (M,ΣM , CM ), introduced with the idea of finding a ‘common’ family of
exogenously imposed conditioning events between product spaces, that we define next.18

Definition 2.3 (Product Conditional Measurable Spaces Induced by Conditioning
Events). Given a conditional measurable space (M,ΣM , CM ) and a measurable space (X,ΣX),
the space

(
M × X,ΣM ⊗ ΣX , CM×X

)
is a product conditional measurable space induced by

(M,ΣM , CM ) if
CM×X := {DX ∈ ΣM ⊗ ΣX | ∃C ∈ CM : DX = C ×X } . (2.2)

When it does not lead to any ambiguity, we drop from Definition 2.3 the reference to the
family of conditioning events and we simply use the expression “product conditional measurable
space”. Also, two product conditional measurable spaces

(
M × X,ΣM ⊗ ΣX , CM×X

)
and

(
M ×

Y,ΣM⊗ΣY , CM×Y
)
induced by CM are said to share CM . Now, observing the structure of CM×X in

Equation (2.2), we have that the conditioning events of spaces sharing CM are always induced from
the conditioning events in CM , which allows us to introduce the following notational conventions
extensively employed throughout this work.

Notation 1 (Common Conditioning Events). Given a conditional measurable space (M,ΣM ,
CM ), for every product conditional measurable space (M ×X,ΣM ⊗ ΣX , CM×X) induced by CM ,
we write:

• (M ×X,ΣM ⊗ ΣX , CM ) instead of (M ×X,ΣM ⊗ ΣX , CM×X),

• ∆CM (M ×X) instead of ∆CM×X (M ×X), and

•
(
ν(·|C)

)
C∈CM

∈ ∆CM (M ×X) instead of
(
ν(·|C ×X)

)
C∈CM

.

In particular, whenever we use the notation ∆CM (M ×X), it is understood that M ×X is induced
by CM , i.e., CM×X is defined as in Equation (2.2).

Given a conditional measurable space (M,ΣM , CM ), two product conditional measurable spaces
(M ×X,ΣM ⊗ΣX , CM×X) and (M × Y,ΣM ⊗ΣY , CM×Y ) sharing CM , and a measurable function
f ∈ (M × Y )M×X , the image measure with conditioning events of f is the function

f̂ := (f̂DY )DY ∈CM×Y : ∆CM×X (M ×X)→ ∆CM×Y (M × Y ),

17WhenM is Polish and ∆(M) is endowed with the topology of weak convergence, this σ-algebra (modulo presence
of conditioning events) is exactly the Borel σ-algebra induced by the topology of weak convergence (see Kechris
(1995, Theorem 17.24, p.112)). Additionally, when in presence of CM , with this σ-algebra we have that ∆CM (M)
is closed in [∆(M)]CM , as established in Battigalli & Siniscalchi (1999, Lemma 1, p.193) (see also Battigalli &
Siniscalchi (1999, Footnote 5, p.193)).

18Where, in particular, the nature of the spaces in Definition 3.2 is the main reason behind the need to introduce
this construct. See also Section 6 for various examples regarding the nature of the conditioning events, where, in
particular, it is important to stress, as can be observed from Section 6.3, that these conditioning events do not need
to represent verifiable information (e.g., information sets reached in a dynamic game), but they should be considered
simply a tool to capture counterfactual reasoning.
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defined as
f̂DY (ν)(E) := ν

(
f−1(E)|DX

)
,

for every DY ∈ CM×Y and DX ∈ CM×X such that there exists a C ∈ CM with πMDY = πMDX =
C, CPS ν :=

(
ν(·|DX)

)
DX∈CM×X

∈ ∆CM×X (M ×X), and E ∈ ΣM ⊗ΣY .19 We rephrase for future
reference what we just introduced in the definition that follows, which exploits the notational
conventions set forth in Notation 1.

Definition 2.4 (Image Measure with Conditioning Events). Given a conditional measurable
space (M,ΣM , CM ), two product conditional measurable spaces (M ×X,ΣM ⊗ΣX , CM ) and (M ×
Y,ΣM ⊗ ΣY , CM ) sharing CM , and a measurable function f ∈ (M × Y )M×X , the image measure
with conditioning events of f is the function

f̂ := (f̂C)C∈CM : ∆CM (M ×X)→ ∆CM (M × Y ),

defined as
f̂C(ν)(E) := ν

(
f−1(E)|C

)
,

for every C ∈ CM , ν :=
(
ν(·|C)

)
C∈CM

∈ ∆CM (M ×X), and E ∈ ΣM ⊗ ΣY .

In the following, it is understood that a given product conditional measurable space (M ×
X,ΣM ⊗ ΣX , CM ) induced by CM is endowed with

Σ∆CM (M×X) := σ
(
{ γpC(E) | E ∈ ΣM ⊗ ΣX , C ∈ CM , p ∈ [0, 1] }

)
(2.3)

naturally defined as an extension of Definition 2.2 to (M ×X).

2.2 Theory of Coalgebras

In what follows, it is assumed a minimal knowledge of certain notions from category theory:20 in
particular, that of category (along with the notions of objects and morphisms of a category, and of
isomorphism and isomorphic objects), (full) subcategory, (endo)functor (along with the definition
of four basic functors, i.e., the identity functor, the constant functor, the power set endofunctor, and
the projection functor), and terminal object in a category, where—for self-containment purposes—
the related definitions can all be found in Appendix A. Also, we employ the following—common
in the field—notational conventions.

Categorical Notational Conventions. Given an arbitrary functor Φ : C → C′ with Ob(C)
denoting the objects of the category C and C(A,A′) denoting the morphisms between two objects
A,A′ ∈ Ob(C),21 we write Φ(X) to capture how the functor acts on an arbitrary X ∈ Ob(C),
whereas we write Φf (without brackets) to capture how it acts on an arbitrary morphism f ∈
C(A,A′). Also, given two arbitrary functors Φ and Φ′, we omit brackets (unless needed to avoid
ambiguous expressions) to capture how the first applies to the second, i.e., we write ΦΦ′. Regarding
morphisms, given two arbitrary morphisms f and g, we indifferently write “fg” or “f ◦ g” (of
course, assuming that the latter expressions are well-defined). Finally, in commutative diagrams,
we represent unique morphisms via dashed arrows.

As a matter of fact, this is everything we actually need for the next definition, which is going
to prove to be crucial for our endeavour, i.e., that of a coalgebra.22

Definition 2.5 (Coalgebra). Given a category C and an endofunctor Φ on C, an Φ-coalgebra
is a tuple C = 〈S ,κ〉 where:

19Obviously, in absence of conditioning events, this definition boils down to the standard one of image measure
as in Aliprantis & Border (2006, Chapter 13.12, p.483) or Bogachev (2007, Chapter 3.6, p.190).

20See Leinster (2014) for an introduction to the topic, Mac Lane (1998) for a comprehensive introduction, or
Borceux (1994) for a more advanced treatment.

21See Definition A.1 for the definition of category and the related notation as employed here.
22See Jacobs & Rutten (1997) for an introductory article or Jacobs (2017) for a textbook on the topic.
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• S ∈ Ob(C) is its carrier;

• the morphism κ : S → Φ(S) is its transition.23

Thus, a coalgebra is a structure that extracts information from a carrier S via the transition
κ.24 In light of this, it is important to capture the way in which, given two coalgebras, the structure
of the first is preserved when ‘moving’ to the second. The next definition achieves this goal.

Definition 2.6 (Coalgebra Morphism & Coalgebra Isomorphism). Given a category C,
an endofunctor Φ on C, and two Φ-coalgebras C := 〈S ,κ〉 and C′ := 〈S ′,κ′〉, an Φ-coalgebra
morphism is a morphism µ : S → S ′ such that the following diagram

S S ′

Φ(S) Φ(S ′)

µ

κ κ′

Φµ

commutes. If µ is an isomorphism, then it is a Φ-coalgebra isomorphism.

Notation 2 (Category of Coalgebras of an Endofunctor). Given a category C and an
endofunctor Φ on C, we let CoAlg(Φ) denote the category of Φ-coalgebras, whose objects are
Φ-coalgebras and whose morphisms are Φ-coalgebra morphisms.

In this paper, we focus on the existence of a terminal object25 in the category of Φ-coalgebra
for a given endofunctor Φ on a category C, i.e., the so-called terminal Φ-coalgebra.

Definition 2.7 (Terminal Coalgebra). Given a category C and an endofunctor Φ on C, a
terminal Φ-coalgebra C := 〈S ,κ〉 is a terminal object in CoAlg(Φ), i.e., it is a Φ-coalgebra such
that for every Φ-coalgebra C := 〈S ,κ〉 there exists a unique Φ-coalgebra morphism µ : S → S .

When a terminal coalgebra exists in CoAlg(Φ), then this object is essentially unique, in light
of the next well-known result from category theory, where we use the symbol “∼=” to capture the
existence of an isomorphism between two objects in a category.26

Lemma 1. Given a category C, terminal objects 1,1′ ∈ Ob(C) are isomorphic, i.e., 1 ∼= 1′.

Whereas—as pointed out above—the focus of this work is on establishing the existence of a
terminal coalgebra given an endofunctor on a category, it is not always the case that there exists a
terminal coalgebra. Indeed, for example, given the category Set and the power set endofunctorP ,27
there does not exist a terminal P-coalgebra, i.e., there exists no terminal P-coalgebra C := 〈S ,κ〉
such that S ∼= P(S), which is an immediate consequence of Cantor’s theorem. However, when the
terminal coalgebra on a given endofunctor on a category does exist, it is possible to exploit an
important result from category theory and the theory of coalgebras known as Lambek’s lemma,28
that we recall next.

23On the contrary, an Φ-algebra is a tuple A := 〈S , α〉 with α : Φ(S) → S (see also Mac Lane (1998, Chapter
VI.2)). The fact that the orientation of the morphism α is reversed with respect to the morphism κ is the reason
behind the name “coalgebra”. Indeed, in category theory (and related fields), the prefix “co” is used when the
direction of the morphisms in a given category C is reversed: this amounts at working with the corresponding
category Cop, whose objects coincide with the objects of C and such that fop ∈ Cop(A′, A) if f ∈ C(A,A′). In
particular, this has an immediate implication, which goes along the name of “Principle of Duality”, that can be
informally stated as follows: every categorical definition, theorem, or proof has a dual, obtained by reversing all the
morphisms (see Leinster (2014, Remark 1.1.10, p.16)).

24See Jacobs (2017, Chapter 1) for an overview of how coalgebras arise in different contexts.
25See Definition A.7 for the definition of terminal object.
26See Definition A.5 for the definition of isomorphism and Definition A.6 for the definition of isomorphic objects.
27See Example A.1 for the definition of the category Set and Example A.3 for the definition of the power set

endofunctor.
28In Lambek (1968), there is no mentioning of the underlying coalgebraic nature of the result. See also Jacobs

(2017, Chapter 2.3, pp.69–70) for a textbook presentation of the result.
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Lemma 2 (Lambek (1968, Lemma 2.2, p.153)). If C := (S ,κ) is a terminal Φ-coalgebra,
then the transition κ : S → Φ(S) is an isomorphism, i.e., S ∼= Φ(S).

Thus, regarding the interpretation of Lemma 2, by focusing on the representation of the result
as establishing S ∼= Φ(S), it is important to observe that this amounts at finding a fixed point for
a given endofunctor Φ.

3. Type Structures

In the following, we let I denote a finite set of agents (or individuals) and 0 stand for what is
called “Nature”, with 0 /∈ I, from which we define I0 := I ∪ {0}: we typically use the symbol “i”
for a representative element of I and “j” for a representative element of I0. Concerning these sets
when used for indexing purposes, we adopt the following standard conventions:

• if I0 is the index set, we let X :=
∏
j∈I0 Xj and X−j :=

∏
y∈I0\{j}Xy;

• if I is the index set, we let X :=
∏
i∈I Xi and X−i :=

∏
y∈I\{i}Xy.

Given a family of functions (fj)j∈I0 of the form fj : Xj → Yj (with the same convention applied
when the index set is I), the induced function f : X → Y is defined as

f
(
(xj)j∈I0

)
:=
(
fj(xj)

)
j∈I0

.

Finally, we employ the following non-standard convention, that considerably lightens our notation:
given an agent i ∈ I and an |I0|-tuple of functions (f0, fi, f−i), we let f±i := (f0, f−i).

3.1 Basic Definition

For our endeavour, first of all, we fix a conditional measurable space (Θ,ΣΘ, CΘ) that captures
the common domain of uncertainty of interest. We now provide a formal definition of what a type
structure is on (Θ,ΣΘ, CΘ).

Definition 3.1 (Type Structure). A type structure on a conditional measurable space (Θ,ΣΘ, CΘ)
is a tuple

T := 〈(Ti, βi)i∈I〉

where, for every i ∈ I,

• Ti is a measurable space, called the type space29 of agent i;

• βi := (βi,C)C∈CΘ : Ti → ∆CΘ(Θ × T−i) is a measurable function, called the belief function of
agent i.

Thus, given that t := (ti)i∈I , an element (θ, t) is called a state of the world, with Θ× T called
the set of states of the world or state space, while a ti ∈ Ti is called an epistemic type (henceforth,
type) of agent i ∈ I, for every i ∈ I. In particular, for every i ∈ I and type ti ∈ Ti, the belief
function βi(ti) captures the belief of type ti regarding Θ×T−i, for every conditioning event C ∈ CΘ,
i.e., βi,C(ti) ∈ [∆(Θ× T−i)]{C} = ∆(Θ× T−i), for every C ∈ CΘ.

3.2 Relation Between Type Structures

Having formalized the notion of type structure, we now provide a formal definition of a morphism
between two type structures on a conditional measurable space (Θ,ΣΘ, CΘ) that preserves the
properties of the spaces belonging to the two structures.

29In the literature, the word “space” is often used to refer both to a tuple of objects such as T and the type spaces
Ti, for every i ∈ I. Here, we distinguish these constructs by using the word “structure” for the tuple and the word
“space” for the set of types.
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Definition 3.2 (Type Morphism & Type Isomorphism). Given a conditional measurable
space (Θ,ΣΘ, CΘ), two type structures T := 〈(Ti, βi)i∈I〉 and T ′ := 〈(T ′i , β′i)i∈I〉 on the conditional
measurable space (Θ,ΣΘ, CΘ), the induced measurable function ϑ := (ϑj)j∈I0 with ϑ0 : Θ→ Θ and
ϑi : Ti → T ′i , for every i ∈ I, is a type morphism if

1) ϑ0 := idΘ;

2) for every i ∈ I, β′i ◦ ϑi = ϑ̂±i ◦ βi, i.e., the diagram

Ti T ′i

∆CΘ(Θ× T−i) ∆CΘ(Θ× T ′−i)

ϑi

βi β′i

ϑ̂±i

commutes.

If (ϑj)j∈I0 is a measurable isomorphism, then the type morphism is a type isomorphism.

In particular, Condition (2) in Definition 3.2 can be alternatively formalized by saying that

β′i,C(ϑi(ti))(E) = βi,C(ti)
(
ϑ−1
±i (E)

)
for every i ∈ I, ti ∈ Ti, C ∈ CΘ, and E ⊆ Θ× T ′−i.

3.3 Infinite Hierarchies of Beliefs

Given a conditional measurable space (Θ,ΣΘ, CΘ) and a type structure T := 〈(Ti, βi)i∈I〉 appended
to it, for every i ∈ I, we can unpack the information contained in a type ti ∈ Ti. This can be
achieved by means of infinite hierarchies of beliefs.

The idea behind the construction of infinite hierarchies of beliefs is to construct beliefs of
increasing order, and, for every belief order, a corresponding family of conditioning events.

Definition 3.3 (The Hierarchical Space). Let Hn
0 := Θ for every n ∈ N := {0, 1, 2, . . . } and

for every i ∈ I proceed with the following inductive construction with n ∈ N:

H0
i := {•}, C0

i := CΘ,
...

...
Hn+1
i := Hn

i ×∆C
n
i (Hn

±i), Cn+1
i :=

{
D ⊆ Hn

±i
∣∣ ∃C ∈ C0

i : D = C ×Hn
−i
}
,

...
...

The hierarchical space of agent i is

Hi := H0
i ×

∏
`∈N

∆C
`
i (H`

±i),

whereas H :=
∏
i∈I Hi is the hierarchical space.30

We now introduce a family of functions, one for every agent i ∈ I, to extract information from
the hierarchical space.

Definition 3.4 (Hierarchy Functions). Given a type structure T := 〈(Ti, βi)i∈I〉 and an arbi-
trary agent i ∈ I, the function

χβ,ni := (χβ,ni,C )C∈CΘ : Ti → Hn
i

is the nth-order hierarchy function of i ∈ I, inductively defined as follows, for every n ∈ N, C ∈ CΘ,
and ti ∈ Ti:

30It is understood that in this definition, in the part that pertains the conditioning events, we exploit Notation 1.
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• (n = 0) Let χβ,0i,C be uniquely defined as χβ,0i,C : Ti → {•};

• (n ≥ 0) Assume that χβ,nC :=
(
idΘ,C , (χ

β,n
i,C )i∈I

)
has been defined, with idΘ,C := idΘ for every

C ∈ CΘ, and let χβ,n+1
i,C be defined as

χβ,n+1
i,C (ti) :=

(
χβ,ni,C (ti), βi,C(ti) ◦

(
idΘ,C , (χ

β,n
−i,C)−1

))
,

: =

(
χβ,0i,C(ti), βi,C(ti) ◦

(
idΘ,C , (χ

β,0
−i,C)−1

)
, . . . , βi,C(ti) ◦

(
idΘ,C , (χ

β,n
−i,C)−1

))
,

for every C ∈ CΘ.

Thus, the hierarchy function of agent i is the function χβi := (χβi,C)C∈CΘ : Ti → Hi such that
χβ,ni,C = πn ◦ χβi,C , for every n ∈ N. Finally, the hierarchy function is the unique induced function

χβ := (χβi,C)i∈I,C∈CΘ : T → H,

where an element χβC(t) is the hierarchy description of t ∈ T at C.

3.4 Large Type Structures

In light of what we introduced in the previous sections, we can now collect the definitions of large
type structures that we employ in this paper.

The notion of terminality we use goes back to Armbruster & Böge (1979, Section 4, p.19)31
and Böge & Eisele (1979, Section 2, p.196), that employ this terminology remaining true to the
original categorical32 formulation of the problem at hand.33

Definition 3.5 (Terminal Type Structure). A type structure T := 〈(T i, βi)i∈I〉 is terminal
if for every type structure T on (Θ,ΣΘ, CΘ) there exists a unique type morphism from T to T .

The next notion has been introduced in the literature as completeness34 in Brandenburger
(2003).

Definition 3.6 (Belief-Complete Type Structure). A type structure T := 〈(T i, βi)i∈I〉 is
belief-complete if the function βi is surjective, for every i ∈ I.

The next definition, introduced in Mertens & Zamir (1985, Definition 2.4, p.6), formally cap-
tures the idea that, given a type structure T := 〈(Ti, βi)i∈I〉, the hierarchy function χβi is injective,
for every i ∈ I, i.e., for every ti, t′i ∈ Ti, if ti 6= t′i, then χβi (ti) 6= χβi (t′i),35 where, in particular,
it should be observed how Liu (2009, Proposition 2, p.2123) establishes that the injectivity of the
(induced) hierarchy function of a given type structure actually characterizes its non-redundancy.

31Given the general lack of availability of this paper, we report here what we consider the relevant part with respect
to the point above. Thus, interestingly, given that in Armbruster & Böge (1979) an oracle system is essentially
a type structure, in Armbruster & Böge (1979, Section 4, p.19), we find that “the canonical oracle system is a
terminal object in the category of oracle systems and n-tuples of commuting maps”, where the authors use the
expression “canonical oracle system” essentially to refer to the universal type structure built from infinite hierarchies
of coherent beliefs (as a projective limit) and the expression “n-tuples of commuting maps” to refer to an n-tuple of
type isomorphisms, with n ∈ N being the cardinality of the set of agents. We are grateful to Michael Greinecker for
having made available to us the original article.

32The same terminology can be found in Vassilakis (1991), Vassilakis (1992), and Pintér (2010), that refer explicitly
to a categorical reformulation of the problem at hand.

33It should be pointed out how two other notions of terminality can be found in the literature, namely, in
Siniscalchi (2008, p.93) (built on the intuition in Battigalli & Siniscalchi (1999, Remark 2, p.201)) and Friedenberg
(2010, Definition 2.6, p.114). We are grateful to Gabriel Ziegler for having raised our attention to this point.

34With Siniscalchi (2008) adopting the same term. By employing this terminology, we follow Meier (2012).
Regarding this notion, see Section 5.2.2.

35See in general the discussion in Mertens & Zamir (1985, Section 2, p.6).
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Definition 3.7 (Non-redundancy). Given a type structure T := 〈(T i, βi)i∈I〉 and the corre-
sponding (induced) hierarchy function χβ :=

(
χβi
)
i∈I , T is non-redundant if the σ-algebra σ(χβii )

on T i is separating, for every i ∈ I.36

Thus, extending a terminology introduced in Siniscalchi (2008) and hinted in Di Tillio (2008,
Section 3.4), we now define the so-called universal type structure.37

Definition 3.8 (Universal Type Structure). A type structure T := 〈(T i, βi)i∈I〉 is universal
if it is terminal, belief-complete, and non-redundant.

4. Universality

The main goal of this paper is to show that, for every conditional measurable space (Θ,ΣΘ, CΘ),
there exists a type structure appended to it that is universal as in Definition 3.8.

In this section we provide a proof of the following theorem, where, for the case of a measurable
space in absence of conditioning events, terminality, uniqueness, and non-redundancy have been
proved by Heifetz & Samet (1998), whereas the belief-completeness has been proved by Meier
(2012), Moss & Viglizzo (2004), and Viglizzo (2005b).

Theorem 1. For every conditional measurable space (Θ,ΣΘ, CΘ), there exists a type structure
T ∗ := 〈(T ∗i , β∗i )i∈I〉 on (Θ,ΣΘ, CΘ) such that:

1) Terminality: T ∗ is terminal;

2) Uniqueness: T ∗ is unique up to measurable type isomorphism;

3) Belief-Completeness: T ∗ is belief-complete;

4) Non-Redundancy: T ∗ is non-redundant.

The type structure T ∗ is the Universal Type Structure on (Θ,ΣΘ, CΘ), which is unique up to
measurable type isomorphism.

To establish this result, we employ the following strategy. First of all, in Section 4.1, we bypass
the presence of interactive agents and we show that there is essentially a basic mathematical
structure underlying the very notion of type structure (in presence of conditioning events), which
is nothing more than a coalgebra for an appropriate endofunctor. As a result, we establish the
existence of a terminal coalgebra for this endofunctor in Proposition 2. Armed with this result, in
Section 4.2, we tackle the presence of interactive agents and we show that the main bulk of the
endeavour has—essentially—already been established. Indeed, a minimal change in the definition
of the appropriate functor is enough to establish Proposition 3, which is a translation of Theorem 1
in coalgebraic terms as set in Proposition 2 (i.e., taking into account the presence of interactive
agents). Finally, in Section 4.3, we simply show that type structures are indeed coalgebras for
the appropriate endofunctor defined in Section 4.2, thus exploiting the obtained result to establish
Theorem 1 essentially as its immediate corollary.

Before embarking in proceeding along the lines of the path sketched above, it is important
to point out that the sections that follow have been written in a modular fashion. As a result,
the reader who does not want to delve into the details of the coalgebraic canonical construction
along with its structural properties as described in details in Section 4.1 can skip that section and
move to Section 4.2, where there is essentially a description of type structures as a certain kind of
coalgebras, which is actually the very point established in Section 4.3 which delivers the theorem
above.

36This notion has been introduced in Mertens & Zamir (1985, Definition 2.4, p.6). See in general the discussion
in Mertens & Zamir (1985, Section 2, p.6) to motivate it and Liu (2009).

37See Section 5.2.3 for a discussion of this notion by considering that an alternative notion of universality can be
found in the literature, as in Brandenburger & Keisler (2006, Section 11.i) and Friedenberg (2010, Section 5.a).
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4.1 There (in the Coalgebraic Framework). . .

The very first step of our endeavour is to introduce the category that is going to be the main
building block behind our undertaking.

Definition 4.1 (Category Meas). The category Meas is the category of measurable spaces, where

• the objects of Meas are measurable spaces;

• the morphisms of Meas are measurable functions.

Now, given that we fix a conditional measurable space (M,ΣM , CM ), where—of course—we
have thatM ∈ Ob(Meas), the first two functors needed for our endeavour are the constant functor
KM and the identity functor Id.38 As a matter of fact, they are the building blocks of the derived
functor PM , which is the functor defined as the binary product of the constant functor KM and
the identity functor Id, i.e., PM := KM × Id, where

• for every X ∈ Ob(Meas), PM (X) := M ×X,

• and
PMf : M ×X →M × Y

such that PMf := (idM , f), for every f ∈Meas(X,Y ).

However, the category Meas is somewhat too ‘large’ to capture the peculiarities of product
conditional measurable spaces and functions between them. The definition that follows introduces
a (full) subcategory39 of Meas which—on the contrary—is perfectly suited for this objective.

Definition 4.2 (Subcategory MeasM). Given a conditional measurable space (M,ΣM , CM ), the
full subcategory MeasM of Meas consists of

• product conditional measurable spaces sharing CM and

• the measurable functions between product conditional measurable spaces sharing CM .

Now, given a (conditional) measurable space (M,ΣM , CM ), building on Definition 2.4, we in-
troduce the endofunctor ∆CM on MeasM defined as

• for every M ×X ∈ Ob(MeasM ), ∆CM (M ×X) := ∆CM (M ×X),

• and
∆CM f := f̂ : ∆CM (M ×X)→ ∆CM (M × Y )

as in Definition 2.4, for every f ∈MeasM (M ×X,M × Y ).

That this is—indeed—an endofunctor40 is immediate in light of the measurability of the image
measure.

Definition 4.3 (Type Functor). The type functor T is the morphism defined as

T := ∆CMPM = ∆CM (KM × Id),

such that

• for every X ∈ Ob(Meas), T(X) := ∆CM (M ×X),
38See Example A.3 in Appendix A for their definitions, where it should be observed how, from a typographical

standpoint, we distinguish the identity endofunctor from the identity morphism via the usage in the former of an
uppercase initial letter (i.e., “I”).

39See Definition A.2 for the definition of (full) subcategory.
40That is, a morphism on the same category that satisfies Axioms (AC)–(AI) in Definition A.3.
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• and
Tf : ∆CM (M ×X)→ ∆CM (M × Y )

as Tf = P̂Mf , for every f ∈Meas(X,Y ).

Given the setting above, we can now state a coalgebraic version of Theorem 1, where the
remainder of this section is devoted to establish this result.

Proposition 2. Fix a conditional measurable space (M,ΣM , CM ).

1) Existence: there exists a terminal T-coalgebra Z := 〈Z , ζ〉;

2) Uniqueness: the terminal T-coalgebra Z := 〈Z , ζ〉 is unique up to T-coalgebra isomorphism;

3) Isomorphic Transitions: the transition ζ of the terminal T-coalgebra Z := 〈Z , ζ〉 is an isomor-
phism.

In other words, in line with the interpretation provided in Section 2.2 of terminal coalgebras as
fixed point of a given functor, we want to establish the existence of an object Z ∈ Ob(CoAlg(T))
such that Z ∼= T(Z ) ≡ ∆CM (M × Z ), i.e., such that the measurable spaces Z and ∆CM (M × Z )
are isomorphic.41

4.1.1 Canonical Construction of the Projective Limit

The proof of Proposition 2 moves from the following coalgebraic canonical construction, which
builds on Adámek & Koubek (1979, Section A).42 The crucial element to perform this canonical
construction is to work with a category with a terminal object.43 It turns out that the category
Meas has a terminal object, namely, the measurable space (1,Σ1), which is a singleton set {•}
endowed with the discrete (and trivial) σ-algebra, where—of course—working with (1,Σ1) as a
terminal object is without loss of generality, since all terminal objects in a given category are
isomorphic from Lemma 1.

Given what is written above, the first step of the construction consists in identifying the functors
upon which our functor of interest T is built, to the then collect them: the idea is to decompose a
given functor in ‘more basic’ functors that should act as the ingredients upon which the functor is
built.44 Thus, given that we obtain {T,PM ,KM , Id}, for every G ∈ {T,PM ,KM , Id}, we build
the corresponding G-based ωop-chains,45 where a G-based ωop-chain on the endofunctor T is a
diagram of the form

G(1) GT1(1) GT2(1) . . . .G! GT1! GT2! (4.1)

Thus, in particular, by spelling out the details:

• when G := T, we have

T1(1) T2(1) T3(1) . . . ,T1! T2! T3! (4.2)

41See Moss (2011, Section 2, p.30).
42In Adámek & Koubek (1979), the result is established for algebras, but it applies by duality—as in Footnote 23–

to coalgebras as well, as emphasized in Barr (1993) and Adámek & Koubek (1995, Example, p.60). The intuition for
this construction has to be found—in light of the tight relation between posets and categories—in the construction
of a least fixed point for directed complete partial orders or lattices, originally identified in Scott (1976, Section 5,
p.552) in the context of λ-calculus (see also Jacobs (2017, Chapter 4.6, p.223)). Smyth & Plotkin (1982) builds a
categorical framework to deal with the aforementioned constructions. It should be also pointed out that Worrell
(2005) is a paper that establishes the result we are after by performing a different construction (see Viglizzo (2005b,
Section 5, p.406) regarding this point).

43For example, this canonical construction cannot be used with bipointed sets (i.e., sets of the form {⊥}tXt{>}
with X an arbitrary set), as employed in Freyd (2008) in his coalgebraic description of [0, 1], since the corresponding
category does not have a terminal object.

44As in Jacobs (2001) (see also Jacobs (2017, Chapter 6.5, p.379)), which is the path taken in Moss & Viglizzo
(2004) and Viglizzo (2005b). See also Section 5.3.2.

45Alternatively called “ωop-sequence”, where the name of this construct comes from the fact that this is a sequence
over the first infinite ordinal number ω. See Definition A.9 for the definition of ωop-chain on an arbitrary endofunctor.
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which corresponds to

∆CM (M × 1) ∆CM
(
M × (∆CM (M × 1)

)
∆CM

(
M ×∆CM

(
M × (∆CM (M × 1)

))
. . . ;T1! T2! T3!

• when G := PM , we have

PM (1) PMT1(1) PMT2(1) . . . ,
PM ! PMT1! PMT2!

which corresponds to

M × 1 M ×T1(1) M ×T2(1) . . . ;
(idM ,!) (idM ,T

1!) (idM ,T
2!)

• when G := KM , we have

KM (1) KMT1(1) KMT2(1) . . . ,
KM ! KMT1! KMT2!

which corresponds to

M M M . . . ;
idM idM idM

• when G := Id, we have

Id(1) IdT1(1) IdT2(1) . . . ,Id! IdT1! IdT2!

which corresponds to

1 T1(1) T2(1) . . . .! T1! T2!

Now, given a G-based ωop-chain on the endofunctor T, the G-based projective limit46 of the
G-based ωop-chain on the endofunctor T is the set

PG :=

{
(x`)`∈N ∈

∏
`∈N

GT`(1)

∣∣∣∣∣ ∀n ∈ N
(
GTn!(xn+1) = xn

) }
(4.3)

endowed with the σ-algebra

ΣPG
:= σ

( {
π−1
n (E)

∣∣ n ∈ N, E ∈ ΣGTn(1)

} )
,

where πG
n :

∏
`∈N GT`(1)→ GTn(1) denotes the projection on n ∈ N as canonically defined.

Remark 4.1. For every n ∈ N, πPM
n (PPM ) = M ×Tn(1) and πKM

n (PKM
) = Mn.

Thus, we can now explicitly introduce the notion of ωop-chain on the endofunctor T and that
of projective limit of the ωop-chain on the endofunctor T: even if they are simply the G-based
ωop-chain on the endofunctor T and the G-based projective limit of the G-based ωop-chain on the
endofunctor T with G := Id, they deserve dedicated definitions in light of their importance for
this construction.

Definition 4.4 (ωop-Chain on the Endofunctor T). An ωop-chain on the endofunctor T is a
diagram of the form

1 T1(1) T2(1) . . . ,! T1! T2! (4.4)

with:
46See Definition 4.5 for the definition of limit in category theory: the notion of projective limit employed here can

be considered a special instance of the latter—more general—definition (with the understanding that, in category
theory, it is possible to find the expressions “projective limit” or “inverse limit” as synonyms of “limit”).
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• concerning objects,

T0(1) := 1,

T1(1) := ∆CM (M × 1),

...

Tn+1(1) := T(Tn(1)),

where, for every m ∈ N, the space
(
Tm(1),ΣTm(1)

)
is a measurable space;

• concerning morphisms and their composition,

T0! :=!,

T1! : ∆CM (M ×∆CM (M × 1))→ ∆CM (M × 1),

...

Tn+1! := TTn!.

One point should be observed regarding Definition 4.4, namely, that it is essentially in the spirit
of the definition of hierarchies in Heifetz & Samet (1998, Section 5, p.335) and of Definition 3.3,
which is a recursive definition with a base step that is a singleton set (which in our context is the
terminal object 1).

Remark 4.2. Since T1(1) = T(1) is nonempty, the morphism ! : T(1) → 1 is measurable and
surjective, from which it follows the measurability and surjectivity of Tn!, for every n ≥ 1.

In the following, we let πn :
∏
`∈N T`(1)→ Tn(1) denote the projection operator on

∏
`∈N T`(1)

as canonically defined, for every n ∈ N.

Definition 4.5 (Projective Limit of the ωop-chain on T). The projective limit of the ωop-
chain on the endofunctor T is the set

P :=

{
(x`)`∈N ∈

∏
`∈N

T`(1)

∣∣∣∣∣ ∀n ∈ N
(
Tn!(xn+1) = xn

) }
. (4.5)

endowed with the σ-algebra

ΣP := σ
( {

π−1
n (E)

∣∣ n ∈ N, E ∈ ΣTn(1)

} )
.

4.1.2 Defining the Cone

Having obtained the G-based projective limit in Equation (4.3), we now introduce a family of
morphisms that allow us to ‘unpack’ the information that is contained in a given T-coalgebra
C := 〈S ,κ〉 exploiting the G-based projective limits.

Thus, given a T-coalgebra C := 〈S ,κ〉 and an arbitrary G ∈ {T,PM ,KM , Id}, a G-based
cone47 for the T-coalgebra C (or G-based C-cone) is a recursively defined collection of morphisms

• Ghκ0,C := ! : G(S)→ G(1) and

• Ghκn,C : G(S)→ GTn(1) such that Ghκn+1,C = GThκn,C ◦ κ, for every n ∈ N,

with C ∈ CM arbitrary and Ghκn :=
(
Ghκn,C

)
C∈CM

for every n ∈ N, such that48 there exists a
unique morphism

hκG,C : G(S)→ PG

such that Ghκn,C = πG
n ◦ hκG,C , for every C ∈ CM , with hκG := (hκG,C)C∈CM .

47See Definition A.10 for the definition of cone.
48The following is what is deemed in the literature a universal property (see Leinster (2014, Introduction) and

Jacobs (2017, Chapter 1.2, p.7), or Aluffi (2009, Chapter I.5, p.33)).
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Remark 4.3. For every n ∈ N, Ghκn = (GTn!) ◦Ghκn+1.49

The reason behind the fact that this construction is called “cone” essentially lies in how the
commutative diagram

G(S)

G(1) GT1(1) GT2(1) . . . GTn(1) . . . PG

Ghκ0 Ghκ1
Ghκ2

Ghκn
hκG

G! GT1!

πG
0

πG
1

πG
2

πG
n

(4.6)

looks like, with the commutative diagram

G(S) GT(S)

GTn(1) GTn+1(1)

Gκ

Ghκn
Ghκn+1 GThκn

GTn!

(4.7)

capturing the definition along with the property captured in Remark 4.3, with n ∈ N arbitrary.
The next definition is simply that of the Id-based C-cone: it deserves its own definition since

it is the translation in this context of the description map of Heifetz & Samet (1998, Section 5,
p.336) and of Definition 3.4.

Definition 4.6 (Cone for T-coalgebra C). Given a T-coalgebra C := 〈S ,κ〉, a cone for the
T-coalgebra C (or C-cone) is a recursively defined collection of morphisms

• hκ0,C := ! : S → 1 and

• hκn,C : S → Tn(1) such that hκn+1,C = Thκn,C ◦ κ, for every n ∈ N,

with C ∈ CM arbitrary and hκn :=
(
hκn,C

)
C∈CM

for every n ∈ N, such that there exists a unique
morphism

hκC : S → P

such that hκn,C = πn ◦ hκC , for every C ∈ CM , with hκ :=(hκC)C∈CM .

In the spirit of Equation (4.7), the commutative diagram

S T(S) = ∆CM (M × S)

Tn(1) Tn+1(1) = ∆CM
(
M ×Tn(1)

)
κ

hκn
hκn+1 Thκn

Tn!

(4.8)

provides a perspicuous representation of the properties captured in Definition 4.6 along with Re-
mark 4.3 by setting G := Id (with the understanding that the same process can lead to a commu-
tative diagram in the spirit of Equation (4.6)), where n ∈ N is arbitrary.

49See Viglizzo (2005b, Section 2.2, p.398) concerning the details of the case G := Id.
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Having defined the notion of cone, it is crucial for our purposes to establish that, given two
T-coalgebras and a T-coalgebra morphism between the two, cones ‘preserve’ the properties of these
T-coalgebras in a precise sense, as established in Heifetz & Samet (1998, Proposition 5.1, p.336)
for what are called there “(hierarchies) descriptions”.

Lemma 3. Given two T-coalgebras C := 〈S ,κ〉 and C′ := 〈S ′,κ′〉 and a T-coalgebra morphism
µ : S → S ′, hκ = hκ

′ ◦ µ is a T-coalgebra morphism.

4.1.3 Intermezzo: Peculiarities of the Topology-Free Coalgebraic Construction

We now revise what we obtained in the previous section. Essentially, this can be compactly
captured by two commutative diagrams.50 In particular, recalling Equation (4.8) and the fact that
T(S) = T1(S), with the commutative diagram

S T1(S) T2(S) T3(S) . . .

1 T1(1) T2(1) T3(1) . . .

P

κ

!

hκ

T1κ

T1!

T2κ

T2!

T3κ

T3!

! T1! T2! T3!

π0
π1

π2

π3

(4.9)

we capture the cone hκ and the ωop-chain on T, whereas with the commutative diagram

G(S) GT1(S) GT2(S) GT3(S) . . .

G(1) GT1(1) GT2(1) GT3(1) . . .

PG

Gκ

G!

Ghκ

GT1κ

GT1!

GT2κ

GT2!

GT3κ

GT3!

G! GT1! GT2! GT3!

Gπ0
Gπ1

Gπ2

Gπ3

(4.10)

we capture what happens when we apply a G ∈ {T,PM ,KM , Id} to the previous commutative
diagram.

Now, if the functor T would preserve ωop-limits,51 we would naturally obtain a corresponding
terminal coalgebra, with corresponding terminal carrier and terminal transition,52 which—as a
matter of fact—is the ‘standard’ way of proceeding to obtain a terminal coalgebra when—indeed—a
functor preserves ωop-limits. The intuition behind the result is the following and starts by assuming
the existence of a limit L for an ωop-chain on an endofunctor Φ (on an arbitrary category C) along
with the corresponding cone (e.g., in line with the limit P in Equation (4.9) for our case).53 Now,
if the endofunctor Φ would preserve ωop-limits, it would follow that Φ(L) would also be a limit,
e.g., in our case we would have that T(P) would be a limit itself of the corresponding ωop-chain.54

However, the main problem behind the present topology-free construction arises exactly at
this stage. Indeed, the functor T does not preserve ωop-limits. In particular, this is the result of
the fact that the functor ∆CM (upon which T is built) does not preserve limits in the form of
ωop-chains, which is an immediate consequence of Viglizzo (2005b, Section 2.2, p.399) in light of

50We would like to thank an anonymous referee for pointing out the usefulness of these commutative diagrams.
51See Definition A.12 for the definition of functor that preserves ωop-limits. Also, the expression “ωop-continuous”

can alternatively be found to refer to the same property.
52For example, see Jacobs (2017, Proposition 4.6.1, p.224).
53See also Rutten (2000, Section 10, p.43) and Moss & Viglizzo (2006, Section 2.1, p.614).
54As it is established in Smyth & Plotkin (1982, Lemma 2, p.765) (for the case of algebras, as in Footnote 23) or

Jacobs (2017, Proposition 4.6.1, pp.224-225) (for a textbook presentation).
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the fact that product conditional measurable spaces are a ‘special’ case of measurable spaces, i.e.,
∆(M) = ∆CM (M) for an arbitrary M when CM is a singleton.55

Thus, having identified the problem, the solution lies in two stages

1) First of all, we obtain the carrier of the terminal T-coalgebra in an ‘indirect’ fashion, by col-
lecting all the states that belong to a carrier of a T-coalgebra, for every possible carrier of a
T-coalgebra. In other words, we ‘carve out’ from P those elements that are the actually relevant
ones for our purposes in light of the fact that they actually ‘belong’ to some T-coalgebra.

2) Moving from the terminal carrier obtained in the previous step, we opportunely define the ter-
minal transition by exploiting the ‘ingredients’ of the functor T in the form of all the constructs
we have introduced for them in Section 4.1.2, i.e., G-based C-cones and G-based projective
limits.

Hence, the next two sections are devoted to these two steps.

4.1.4 Obtaining the Terminal Carrier

Building on the apparatus developed in Section 4.1.1 and Section 4.1.2 and on the intuition provided
by Section 4.1.3, we now define for every G ∈ {T,PM ,KM , Id} a subset of the projective limit
PG, namely,

ZG := { z ∈ PG | ∃C := 〈S ,κ〉 ∈ Ob(CoAlg(T)) ∃s ∈ S : z = hκG(s) } , (4.11)

which is endowed with the σ-algebra ΣZG
inherited from PG. It is worth mentioning how,

already at this stage, the paraphernalia introduced in Section 4.1.1 and Section 4.1.2 for the
G ∈ {T,PM ,KM , Id} play a role in Equation (4.11).

Thus, we can now define what is going to turn out as the carrier of the terminal T-coalgebra
we are interested in, namely,

Z := { z ∈ P | ∃C := 〈S ,κ〉 ∈ Ob(CoAlg(T)) ∃s ∈ S : z = hκ(s) } , (4.12)

which is endowed with the σ-algebra ΣZ inherited from P and it is simply Equation (4.11) with
G := Id, i.e., Z = ZId.

4.1.5 Obtaining the Terminal Transition

The importance of ZG, for every G ∈ {T,PM ,KM , Id}, lies in the fact that we employ the
following strategy to obtain the terminal transition:

1) we show the existence of a measurable morphism ζ+ : Z → ZT;

2) we show the existence of a measurable morphism
−→
ζ : ZT → T(Z );

3) we let ζ : Z → T(Z ) be defined as ζ :=
−→
ζ ◦ ζ+.

However, and rather crucially, Step (2) of the project relies on showing the existence of measurable
morphisms ζG and ϕG, for every G ∈ {T,PM ,KM , Id}. Essentially, the strategy revolves around
the idea of capturing the very nature of the functor T via morphisms ζG (which capture the
‘nature’ of the functors upon which it is built) and morphisms ϕG (which encapsulate the order
in which the functor ‘unpacks’ the functors that are its building blocks). In a more compact way,

55See Section 5.2.1 with respect to this point, in particular concerning how it translates in the context of type
structures.
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we want to obtain measurable spaces and measurable morphisms such that the following diagram

S T(S) = ∆CM (M × S)

Z ZT T(Z ) = ∆CM (M × Z )

Tn+1(1)

κ

hκ Thκ
hκT

Thκn

ζ+

πn+1

−→
ζ

πT
n

Tπn

(4.13)

commutes, with the understanding that
−→
ζ is the result of the following diagram

ZT = Z∆CMPM ∆CM (ZPM ) ∆CM (ZKM
× ZId)

Z ∆CM (M × Z )

ζ
∆CM PM

−→
ζ

∆CM ζPM

∆CM
(
ζKM ,ζId

)
ζ

ζ+
(4.14)

commuting, i.e., we want to define
−→
ζ in such a way that Equation (4.14) commutes, where every

ζG for G ∈ {T,PM ,KM , Id} is defined in Appendix C and it is important to observe that the
expressions “∆CM (ZPM )” and “∆CM (ZKM

×ZId)” in Equation (4.14) are both well-defined in light
of Remark 4.1. In particular, we want to define

−→
ζ as

−→
ζ := ϕ∆CMPM

: =
(
∆CMϕPM

)
ζ∆CMPM

: =

(
∆CM

((
ζKM

, ζId

)
ζPM

))
ζ∆CMPM (4.15)

where the idea behind Equation (4.15) is that, for example, in the passage from ∆CM (ZKM
× ZId)

to ∆CM (M × Z ), the functor ∆CM has already been employed in the previous step and as a
result should not be written down, where the details can be found—once more—in Appendix C
(in particular, in the proof of Lemma 5 below).56

Thus, first of all, we establish Step (1) of the program above by proving the existence of a
measurable morphism ζ+ : Z → ZT.

Lemma 4. There exists a measurable morphism ζ+ : Z → ZT such that ζ+ ◦ hκ = hκT ◦ κ, for
every T-coalgebra C := 〈S ,κ〉.

More succinctly, Lemma 4 can be captured by stating that the following diagram

S T(S)

Z ZT

κ

hκ hκT

ζ+

commutes, where it is understood that, given that the actual codomain of hκ is P, this is an
innocuous abuse of notation which subsumes the existence of an inclusion map from Z to P.

Then, we establish Step (2) of the strategy above, with the understanding that all the—
background—work whose intuition is sketched above regarding the existence of measurable mor-
phisms ζG, for every G ∈ {T,PM ,KM , Id}, can be found in Appendix C.

56See Viglizzo (2005b, Example 2, p.405) for a similar reading of a commutative diagram in the same context.
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Lemma 5. There exists a measurable morphism

−→
ζ := (

−→
ζ C)CM : ZT → T(Z ) = ∆CM (M × Z )

such that:

1)
−→
ζ ◦ hκT = Thκ, for every T-coalgebra C := 〈S ,κ〉;

2) Tπn ◦
−→
ζ = πT

n , for every n ∈ N.

Once more, succinctly, Lemma 5 amounts at establishing the commutativity of the following
diagram

∆CM (M × S)

ZT ∆CM (M × Z )

Tn+1(1)

hκT Thκ

−→
ζ

πT
n Tπn

(4.16)

where it should be recalled that Tn+1(1) = ∆CM (M ×Tn(1)).
Finally, leveraging on Lemma 4 and Lemma 5, we now employ what we obtained with the

previous lemmata by defining the terminal transition ζ as

ζ :=
−→
ζ ◦ ζ+. (4.17)

4.1.6 Establishing Terminality

We now collect what we established in Section 4.1.4 and Section 4.1.5 in a dedicated definition.

Definition 4.7 (The T-Coalgebra Z). The T-Coalgebra

Z := 〈Z , ζ〉

is the T-Coalgebra whose carrier Z is defined as in Equation (4.12) and whose transition ζ is
defined as in Equation (4.17).

What now remains to do is to establish the terminality of Z. Thus, first of all we start from
the following lemma, whose proof is immediate in light of the fact that the following diagram

S T(S)

Z ZT T(Z )

κ

hκ hκT
Thκ

ζ+

ζ

−→
ζ

commutes from Lemma 4 and Lemma 5, which is in the spirit of Heifetz & Samet (1998, Proposition
5.3, p.337).

Lemma 6 (Cone as Coalgebra Morphism). For every T-coalgebra C := 〈S ,κ〉, hκ is a T-
coalgebra morphism.

Notation 3 (Cone for T-Coalgebra Z). We let h denote the cone of Z := 〈Z , ζ〉.

We now establish the fact that the cone h is nothing more than the identity function on Z ,
which is analogous to Heifetz & Samet (1998, Lemma 5.4, p.338).
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Lemma 7. Given the T-coalgebra Z, h = idZ .

We can now state the terminality of Z in the following lemma, which is analogous to Heifetz &
Samet (1998, Theorem 5.5, p.338).

Lemma 8. The T-coalgebra Z := 〈Z , ζ〉 is a terminal T-coalgebra.

Finally, we provide the proof of Proposition 2.

Proof of Proposition 2. We establish the points in the order in which they are presented in the
statement of the result.

1) Existence: This is an immediate consequence of Lemma 8.

2) Uniqueness: The uniqueness (in this case up to T-coalgebra isomorphism) of a terminal object
comes from Lemma 1.

3) Isomorphic Transitions: The fact that ζ is an isomorphism is an immediate consequence of
Lambek’s lemma, i.e., Lemma 2.

Thus, what is written above establishes the result. �

4.2 . . . In the Dale (between the Two Worlds). . .

In the previous section, we established the existence of a terminal T-coalgebra in the category
Meas. However, we do not have to lose sight of the fact that what we are after is actually a proof
of Theorem 1, which is a theorem regarding the existence of a type structure, i.e., an object that is
intrinsically related to the presence of multiple interactive agents. Thus, quite simply, Meas is not
rich enough for our purposes. Indeed, we need to work in a theoretical framework that captures
the presence of multiple interactive agents. Thus, the definition that follows accomplishes exactly
this.

Definition 4.8 (Category MeasI). The category MeasI is the category of measurable spaces,
where

• the objects of MeasI are an |I|-fold product of measurable spaces;

• the morphisms of MeasI are an |I|-fold product of measurable functions.

Hence, in order to get closer to the original problem addressed for type structures built on a
common domain of uncertainty (Θ,ΣΘ, CΘ), from now on we focus on a given conditional measur-
able space (Θ,ΣΘ, CΘ). Also, with an innocuous abuse of notation, we employ the same symbols
we used in the previous section (modulo usage of Θ instead of M), with the caveat that—with a
minimal change in comparison to the previous section—now we let PΘ := KΘ ×Proj−i, i.e., PΘ

is defined by using the constant functor KΘ on Θ and the projection functor Proj indexed by I.57
Thus, given a conditional measurable space (Θ,ΣΘ, CΘ), we let the morphism

T : MeasI →MeasI

such that T := ∆CΘPΘ, i.e.,

T := ∆CΘPΘ = ∆CΘ(KΘ ×Proj−i),

be defined as,

• for every (Ti)i∈I ∈ Ob(MeasI),

T
(
(Ti)i∈I

)
:=
(

∆CΘ(Θ× T−i)
)
i∈I
,

57See Example A.2 for its definition.
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• and
Tµ :=

(
̂(idΘ,µ−i) : ∆CΘ(Θ× T−i)→ ∆CΘ(Θ× T ′−i)

)
i∈I

(4.18)

for every µ := (µi)i∈I ∈MeasI((Ti)i∈I , (T ′i )i∈I),

where it is immediate to establish that this morphism is indeed a functor.

Notation 4. We let Hi := ProjiT, i.e., Hi(Ti) := ProjiT
(
(Ti)i∈I

)
and Hiµi := ProjiT

(
(µi)i∈I

)
.

It has to be observed that Equation (4.18) is well-defined in light of the definition of T, which
implies that, given a certain profile T := (Ti)i∈I , the application of the functor PΘ leads to Θ×T ,
which—in turn—is related to the fact that, for every i ∈ I with µi : Ti → T ′i , Hiµi = ̂(idΘ,µ−i)

is well-defined, because the image measure ̂(idΘ,µ−i) is defined on the induced function

(idΘ,µ−i) : Θ× T−i → Θ× T ′−i

which is a product conditional measurable space as needed for Definition 2.4.

Definition 4.9 (T-Coalgebra). A T-coalgebra is a tuple

C := 〈(Ti,βi)i∈I〉

where Ti is the i-carrier of the T-coalgebra with transition βi : Ti → ∆CΘ(Θ × T−i), for every
i ∈ I.

We can now reformulate Proposition 2 for the present setting where the focus is on the category
MeasI .

Proposition 3. Fix a conditional measurable space (Θ,ΣΘ, CΘ).

1) Existence: there exists a terminal T-coalgebra Z := 〈(Zi, ζi)i∈I〉;

2) Uniqueness: the terminal T-coalgebra Z := 〈(Zi, ζi)i∈I〉 is unique up to T-coalgebra isomor-
phism;

3) Isomorphic Transitions: the transition ζi of the terminal T-coalgebra Z := 〈(Zi, ζi)i∈I〉 is an
isomorphism, for every i ∈ I.

Whereas we do not give the details of the proof, which essentially proceeds along the lines of
that of Proposition 2 with the caveat that a considerably heavier notation is needed to deal with
the presence of multiple agents, we sketch the path that should be taken by proceeding along the
lines of what has been done in Section 4.1. Thus, in the following, everything starts from the—by
now classical—canonical construction, with the understanding that T(1) (and the like) is used to
denote the application of the endofunctor T to an (|I| − 1)–tuple of 1 (endowed with the discrete
σ-algebra), whereas T! (and the like) is used to denote the application of the endofunctor T to an
(|I| − 1)–tuple of morphisms !.

It is useful to ‘unpack’ the information contained in Definition 4.4 by showing how the ωop-
chains look for a Ti, with i ∈ I arbitrary. Hence, we have

1 H
1

i (1) H
2

i (1) . . . ,! H
1
i ! H

2
i !

which, by spelling out the details, amounts at

1 ∆CΘ
(

Θ×
∏
j∈I\{i} 1

)
∆CΘ

(
Θ×

∏
j∈I\{i}

(
∆CΘ(Θ×

∏
j∈I\{i} 1)

))
. . . ,! H

1
i ! H

2
i !

in light of the fact that
∏
j∈I\{i} 1 = 1|I|−1. Once more, it is immediate to observe by inspection

that this is in the spirit of the construction of Heifetz & Samet (1998, Section 5, p.335) in presence
of conditioning events.
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Getting into the details of the profile P := (Pi)i∈I and decomposing the information contained
in Equation (4.5), we have

Pi :=

{
(x`)`∈N ∈

∏
`∈N

H
`

i(1)

∣∣∣∣∣ ∀n ∈ N
(
H
n

i !(xn+1) = xn

) }
.

Now, given a T-coalgebra C := 〈(Ti,βi)i∈I〉, we define the notion of cone over that T-coalgebra,
whose role is to map the information ‘implicitly’ contained in the carrier (Ti)i∈I to (Pi)i∈I as defined
above. Thus, given a T-coalgebra C := 〈(Ti,βi)i∈I〉, a cone for the T-coalgebra C is a recursively
defined collection of morphisms, for every i ∈ I and n ∈ N,

• hβi,0 :=! : Ti → 1,

• hβi,n : Ti → H
n

i (1) such that hβi,n+1 = Hih
β
i,n ◦ βi,

such that there exists a unique morphism

hβi : Ti → Pi

such that hβi,n(tj) = πn ◦ hβi (ti), for every i ∈ I, ti ∈ Ti, and n ∈ N. Finally, building on
Definition 4.6, we can now define, for every i ∈ I, the carrier of the terminal T-coalgebra we are
interested in, namely,

Zi :=
{

zi ∈ Pi
∣∣∣ ∃C := 〈(Ti,βi)i∈I〉 ∈ Ob(CoAlg(T)) ∃ti ∈ Ti : zi = hβi (ti)

}
,

which is endowed with the σ-algebra ΣZi inherited from Pi, with Z := (Zi)i∈I .
Having obtained the structure of Z := (Zi)i∈I , constructing the terminal transition ζ := (ζi)i∈I

and establishing the terminality of the corresponding T-coalgebra proceeds along the same path
taken in Section 4.1.5 and Section 4.1.6. In particular, given that we let h := (hi)i∈I denote the
cone of the terminal T-coalgebra Z := 〈(Zi, ζi)i∈I〉, we can establish the following crucial—and
obviously related—properties of hi, for every i ∈ I.

Remark 4.4. For every i ∈ I, the σ-algebra on Zi is separative, with hi = idZi obviously injective.

4.3 . . . and Back Again (to Type Structures)

We can now go back to our original problem, namely, the proof of Theorem 1. In light of Section 4.2,
it should be observed how the notation we use in this section for the elements of a type structures
and those of a coalgebra are actually the same. Thus, the proof of the next result is immediate
by inspection. It has to be observed that this also—implicitly—establishes that cones (as in
Section 4.2) are hierarchy functions as in Definition 3.4.

Lemma 9 (Type Structures as Coalgebras). Given a conditional measurable space (Θ,ΣΘ, CΘ),
a type structure T := 〈(Ti, βi)i∈I〉 is a T-coalgebra C := 〈(Ti, βi)i∈I〉.

Crucially, we have to establish that type morphisms and coalgebra morphisms are actually the
same, which we achieve next.

Lemma 10 (Type Morphisms as Coalgebra Morphisms). Given a conditional measurable
space (Θ,ΣΘ, CΘ) and two arbitrary type structures T := 〈(Ti, βi)i∈I〉, and T ′ := 〈(T ′i , β′i)i∈I〉 on
(Θ,ΣΘ, CΘ) sharing CΘ, a type morphism ϑ := (ϑj)j∈I0 is a T-coalgebra morphism.

In light of what we established in Section 4.1 and Section 4.2 and the lemmata above, we can
finally provide the proof of Theorem 1.

Proof of Theorem 1. From Proposition 3, we have these immediate implications concerning Theo-
rem 1:
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1) Terminality: From Point (1) of Proposition 3, Lemma 9, and Lemma 10, there exists a terminal
type structure

T ∗ := 〈(T ∗i , β∗i )i∈I〉

on (Θ,ΣΘ, CΘ);

2) Uniqueness: From Point (2) of Proposition 3, this terminal type structure T ∗ is the unique up
to measurable type isomorphism terminal type structure on (Θ,ΣΘ, CΘ);

3) Belief-Completeness: From Point (3) of Proposition 3, the terminal type structure T ∗ is belief-
complete, i.e., the belief function β∗i is surjective, for every i ∈ I.

4) Non-Redundancy: From Lemma 9 and Remark 4.4, T ∗ is non-redundant by construction.

Being terminal, belief-complete, and non-redundant, T ∗ is the Universal Type Structure on
(Θ,ΣΘ, CΘ) as in Definition 3.8, which, in light of its uniqueness up to measurable type isomor-
phism, establishes the result. �

5. Discussion of the Construction

5.1 On Technical Aspects of the Construction

5.1.1 On Type Structures

Regarding our definition of type structure as in Definition 3.1, it should be observed that we could
have defined the belief function of agent i as βi : Ti → ∆CΘ(Θ× T ), for every i ∈ I, as in Heifetz
& Samet (1998, Definition 3.1, pp.329–330). With such a definition, it is typically imposed the
additional requirement that margTi βi,C(ti) = δti , for every ti ∈ Tj and C ∈ CΘ,58 with marg
denoting the marginal operator as canonically defined and δti denoting the Dirac measure on ti. It
has to be observed that this property is not necessary for the construction: Heifetz & Mongin (2001,
Section 5, p.41) and Meier (2012, Definition 8, p.12) distinguish type structures which possess this
property from those which do not,59 where in their terminology a type structure that satisfies this
requirement is called a “Harsanyi type structure”.60

5.1.2 On Type Morphisms

Concerning our definition of type morphism, as it is widespread in the literature, given an arbitrary
conditional measurable space (Θ,ΣΘ, CΘ) and a type structure T , we defined it in Definition 3.2
by introducing a function ϑ0 := idΘ. Interestingly, this is not explicitly present in the notion of
T-coalgebra morphism. Now, a similar issue is present in Moss & Viglizzo (2004), as emphasized
in Moss & Viglizzo (2004, Section 2, pp.284–285), where the authors point out that their notation
remains silent regarding the underlying (common) domain of uncertainty. Of course, our notation
does not—and cannot—remain silent, since emphasizing the common domain of uncertainty is cru-
cial to properly deal with product conditional measurable spaces sharing a given set of conditioning
events. Thus, as a matter of fact, our proof takes care of the existence of the function ϑ0 in light
of the definition of PΘ, which is based on a binary product involving KΘ, that—in turn—induces
a morphism idΘ.

5.1.3 On the Family of Conditioning Events

The present construction does not put any restriction on the conditioning events belonging to a
given conditional measurable space (M,ΣM , CM ). Thus, it is important to make a comparison with
the original construction obtained in Battigalli & Siniscalchi (1999, Section 2) by paying special
attention to the assumptions made there and the rationale behind them. In particular, in Battigalli
& Siniscalchi (1999, Section 2.1, p.191), it is assumed that, given a conditional measurable space
(M,ΣM , CM ), M is a Polish space, ΣM is its Borel σ-algebra, and the events in CM are clopen
(i.e., closed and open) and at most countable.

58In particular, this is actually Condition (3) in Heifetz & Samet (1998, Definition 3.1, pp.329–330).
59See also the discussion of this point in a coalgebraic context in Viglizzo (2005a, Chapter 7.1, pp.79–81).
60With the caveat that these authors employ the word “space” instead of “structure”.
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Regarding the clopeness of the conditioning events in CM , this assumption is used in Battigalli
& Siniscalchi (1999, Proof of Lemma 1, p.224) to establish that ∆CM (M) is a closed subset of
[∆(M)]CM . Concerning the cardinality assumption, assuming an at most countable family of
conditioning events is crucial in Battigalli & Siniscalchi (1999, Proof of Proposition 1, pp.196–
197), where it is used to prove the existence of—using our notation—a homeomorphism f : Hc →
∆CM (M ×H), where H is the set of infinite hierarchies of beliefs not necessarily coherent, whereas
Hc is the set of infinite hierarchies of beliefs that are coherent. In particular, this assumption is
needed to establish, via arguments from Kechris (1995, Section 11.A, p.68) concerning Borel sets,
that every nth-order hierarchy of CPSs belonging to a CPS over ∆CM (M×H) satisfies Axiom (C3)
from Definition 2.1.

It is immediate to observe that, while the clopeness assumption simply has no bite in our
topology-free framework, the cardinality assumption is not needed to establish our result. Hence,
our construction does not put any restriction on the nature of the conditioning events.61

5.2 Relation to Universality Notions

5.2.1 On the Notion of Kolmogorov’s Consistency

The point made in Section 4.1.3, that is built on Viglizzo (2005b, Section 2.2, p.399), is essentially
related to the impossibility of obtaining an analog of the Kolmogorov’s Extension Theorem62 for an
infinite product of measurable spaces, as shown by Sparre Andersen & Jessen (1948), Dieudonné
(1948, Section 7, p.42), and Halmos (1950, Chapter IX.49(3), p.214), which is—in turn—related to
the result obtained in Heifetz & Samet (1999) concerning the fact that there are coherent infinite
hierarchies of beliefs that are not types, i.e., when we do not start from topological assumptions,
it is possible to obtain a coherent infinite hierarchy of beliefs such that there exists no extension
over the infinite product (which would be essentially the type, as employed in economics).63 In
other words, by letting C denote the space of coherent infinite hierarchies of beliefs over a common
domain of uncertainty Θ with T ∗ the corresponding space of all types, we have T ∗ ⊆ C, with strict
inclusion T ∗ ⊂ C when we work without topological assumptions.64 Relatedly, it is important to
point out that it has been shown in Schubert (2009) that starting with appropriate topological
assumptions (and relying on a suitable version of the Kolmogorov’s Extension Theorem), it is
possible to build an endofunctor that preserves limits in the form of ωop-chains and allows to
obtain the corresponding terminal coalgebra via the canonical hierarchical construction of ωop-
chains presented in Section 4.1.1, with the caveat that the intuition provided in Section 4.1.3 can
now be used.65

5.2.2 On Belief-Completeness & Relation to Meier (2012)

For the ‘standard’ case without conditioning events, the isomorphic nature of the belief functions
in the construction in Heifetz & Samet (1998) along with—as a corollary—its belief-completeness
has been established for the first time in Meier (2012, Theorem 4, p.29),66 where the author
builds an infinitary probability logic to capture reasoning in type structures.67 Thus, to relate
this work to the present one, it is worthwhile to recall the path taken in Meier (2012) to obtain
the result. Hence, Meier (2012) starts by addressing belief structures, where, given a measurable

61We are extremely grateful to an anonymous referee for having questioned the need of the countability assumption
we had in a previous version of the paper. In doing so, we realized we could go back to work with ‘unrestricted’
conditioning events in the spirit of Guarino (2017) and Fukuda (2024a) (and, with respect to this point, it is
worthwhile mentioning that neither cardinality nor topological assumptions are made in the original Rênyi (1955)).

62See Aliprantis & Border (2006, Theorem 15.26, p.522).
63See Fukuda (2024b) for a work that obtains types as coherent infinite hierarchies of beliefs in a topology-free

setting via the usage of ordinal numbers and transfinite recursion.
64In particular, see Heifetz & Samet (1999, Section 5).
65In particular, Schubert (2009) works in the subcategory SB of Meas comprised of standard Borel spaces (i.e.,

those measurable spaces (X,BX) such that there exists a Polish topology τX on X with BX being the family of
Borel sets generated by τX) with the subprobability endofunctor S, where a subprobability measure µ on a standard
Borel space (X,BX) is a σ-additive functional on BX such that µ(X) ∈ [0, 1] (see also Moss (2011, Section 2.4,
p.33)).

66The first version of this (in the words of Aumann & Heifetz (2002, Footnote 14, p.1674), where there is also a
brief—nonetheless informative—description of part of the results therein) “beautiful, path-breaking paper” goes back
to 2001, thus establishing the result before Moss & Viglizzo (2004).

67See also Heifetz (1997), Aumann (1999b), and Heifetz & Mongin (2001).
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space (Θ,ΣΘ), a belief structure68 (as in Meier (2012, Definition 7, p.11), in its full generality) is a
tuple B := 〈Ω,θ, (τi)i∈I〉 where θ ∈ ΘΩ is a measurable function and τi ∈ [∆(Ω)]Ω is measurable,
for every i ∈ I. Thus, first of all, completeness (in the logical sense as in Blackburn et al. (2001,
Chapter 4)) is established for the logical system introduced to deal with belief structures; then,
it is established the terminality of the constructed structure canonically built from appropriate
formulas; finally, it is showed that the canonical structure has a product structure (in Meier (2012,
Proposition 4(3), p.28)) and it is belief-complete (in Meier (2012, Theorem 4, p.29)).

In light of the previous paragraph, three points are in order. The first one is that, in this work,
we obtain the belief-completeness of the universal type structure T ∗ for free, as a corollary of
Lambek’s lemma. As a matter of fact, we see this as a positive side of performing the endeavour
in a coalgebraic framework, which can be exploited by practitioners working on the existence of
large interactive structures in topology-free settings to obtain all relevant results at once. The
second one is that, whereas we built the terminal T-coalgebra via so-called final sequences, it is
possible to obtain the same result via tools from coalgebraic modal logic, as done in Moss & Viglizzo
(2004),69 where it would be interesting to see the relation between these logics and those as the one
obtained in Meier (2012). Finally, obtaining the belief-completeness of our structure is one of the
differences between the present work and Fukuda (2024a, Section C.1, Online Appendix), where
only terminality is established, the other being that the focus in that work is on belief structures.70

5.2.3 On the Notion of Universality

First of all, we want to emphasize one point about the terminology we use, namely our—somewhat
non-standard—definition of universality with respect to how the term is used in the literature on
large interactive structures. As mentioned in Section 3.4, we extend a terminology that goes back
to Siniscalchi (2008, p.93) according to which a type structure is universal if terminal and belief-
complete. However, starting from Mertens & Zamir (1985, Theorem 2.9, pp.7–8),71 the notion of
universal type structure has been associated with the idea that any other type structure can be
uniquely embedded into the universal one. In other words, the term “universal” has been used as
a synonym for “terminal”. Interestingly, and somewhat reconciling the usage of both terms for the
same object, it should be pointed out how this very definition of universality fits the categorical
usage of the word “universal” in the opening quotation of this work by Dieudonné (1989): every
other type structure can indeed be built from the universal one.

In second place, it is important to address the relation between the notion of terminality and
its connection to the notion of universality—as described above—in its categorical interpretation
and the other notions of belief-completeness and non-redundancy. Thus, in particular, it is natural
to ask ourselves if terminality actually implies all these properties.72 The answer is: it depends!
Indeed, the problem lies in how we look at this issue. If we approach it from a purely mathematical
standpoint, terminality does not necessarily imply all the other properties due to what happens
in the topology-free case, where the construction of the terminal type structure as performed in
Heifetz & Samet (1998) does not deliver automatically belief-completeness (obtained—as pointed
out in Section 1.1 and Section 5.2.2—for the first time in Meier (2012)). However, it is also
important to recognize that, exactly due to ‘categorical’ reasons, terminality from a conceptual
standpoint does ‘imply’ all the other properties and, once certain tools are employed (for example,
in the topology-free case without conditioning events, infinitary probability logic as in Meier (2012)
or coalgebraic methods as in Viglizzo (2005b)), indeed it turns out that the terminal type structure
is the universal one. In particular, with respect to this point, it could be possible to introduce
a new notion of universality, call it “Categorical Universality”, which would correspond to the
idea of a type structure being terminal (and unique up to type isomorphism), non-redundant,
and such that all the belief functions are isomorphisms in the relevant category. Indeed, this
would capture exactly the properties we obtain via the coalgebraic canonical construction, with
belief-completeness being an immediate consequence.

68See Mertens & Zamir (1985, Definition 2.2, p.4) or Maschler et al. (2013, Chapter 10).
69See also Moss & Viglizzo (2006). Regarding coalgebraic logic, see Jacobs (2001), Kurz (2001), and Rößiger

(2001) or Jacobs (2017, Chapter 6.5) for a textbook presentation.
70See also Di Tillio et al. (2014).
71For example, see also Heifetz & Samet (1998, Definition 3.3, p.331).
72We are extremely grateful to an anonymous referee for having raised this point.
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Now, it seems that the issues pointed out above strongly support the usage of coalgebraic
methods for the construction of large interactive structures in light of the fact that, via these
tools, terminality implies all the properties exactly as in the case of the topological constructions,
where the usual canonical construction73 of a type structure that is terminal automatically delivers
its universality. In particular, in the spirit of what pointed out in Section 5.2.1, it is worth
emphasizing that the coalgebraic canonical construction presented in Section 4.1.1 can be—in
principle—delivered in both the topological and the topology-free case,74 thus, turning out to be
a bridge between constructs obtained via procedures at the present stage seemingly different.75

5.3 Relation to the Literature

5.3.1 Relation to Heifetz & Samet (1998)

Concerning the construction in Heifetz & Samet (1998, Section 5), there is a tight relation between
the construction performed here and the one delivered therein. Indeed, the importance of the
construction in Heifetz & Samet (1998, Section 5) cannot be emphasized enough, since, starting
from the usage of a singleton set, it is essentially coalgebraic in nature. Indeed, it is possible to find
a tight link between all the results obtained Heifetz & Samet (1998, Section 5) and those in Viglizzo
(2005b). However, as it has already been pointed out in Section 1.1, it is important to stress that
the construction in Heifetz & Samet (1998, Section 5) does not deliver all the universality properties
at once, which is the reason why we employ coalgebraic tools in the present work.76

5.3.2 Relation to Viglizzo (2005b)

Regarding Viglizzo (2005b), it is important to emphasize two—somewhat related—points. The
first one is that the result (and corresponding proof) in Viglizzo (2005b) is actually more general
than Proposition 2. Indeed, Viglizzo (2005b, Theorem 1, p.404) states that there exists a terminal
Φ-coalgebra, for every endofunctor Φ on Meas which is build from the identity, the constant, and
an appropriately defined ∆ functor (as ∆(X) := ∆(X), for every X ∈ Ob(Meas), and ∆f as
the image measure of a morphism f belonging to Meas) with a closure over binary products and
coproducts, i.e., disjoint unions. Thus, for example, this result tells us that there exists a terminal
Φ-coalgebra for the—admittedly cumbersome—functor Φ := Id×KM ×∆(Id tKM ). Now, our
Proposition 2 does not deliver anything like that, but it is rather tailor-made to deal with type
structures with conditioning events, which considerably changes the nature of the problem, the
point being that, for example, a minimal departure from the theoretical problem we faced such as
the expression ∆CM (Id) would actually be ill-defined. Nonetheless, in the spirit of the minimal
adaptation made in Section 6.3 of the path sketched in Section 4.2, we can obtain a result concerning
the flexibility of the form of the functor we want to focus on as in Viglizzo (2005b), leveraging on
the definition of ζ as ζ :=

−→
ζ ◦ ζ+ and always taking into account the peculiarities of the functor

∆CM introduced here. In particular, this is a byproduct of the fact that the path we follow and the
proofs of the results we deliver in Section 4.1 are (modulo notation) those in Viglizzo (2005b),77
with the notable exception of Lemma C.1, which—even if along the lines of the corresponding
Viglizzo (2005b, Lemma 8, pp.402–403)—deals with the presence of conditioning events and, as
a result, shows how the crucial new technical element of the present work lies in identifying the
peculiarities that arise in presence of conditioning events, and of Lemma 5, which ‘fixes’—contrary,
as pointed out above, to Viglizzo (2005b)—the ‘form’ of the functor we are interested in.

Now, the generality of Viglizzo (2005b) is not a peculiarity of this very paper, but rather of
the nature of the problems addressed in the stream of literature to which the paper belongs, which

73With the caveat that, in the topological case, there are essentially two canonical constructions as in the ter-
minology introduced in Battigalli et al. (Work in Progress): i.e., the bottom-up constructions, with the coherency
requirement imposed at the outset in the spirit of Mertens & Zamir (1985), and the top-down constructions, where
first infinite hierarchies of beliefs are constructed and then the coherency requirement is imposed on them, like in
Brandenburger & Dekel (1993).

74See Heinsalu (2014, Section 2, p.257) for a similar point.
75And it is worth mentioning with respect to the notion of Categorical Universality set forth above that homeo-

morphisms are—indeed—isomorphisms in the category Top of topological spaces and continuous functions between
them.

76See also Section 5.2.3 with respect to this point.
77That we rewrite here with our notation for self-containment purposes.
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can be captured by the question if it is possible to build a terminal coalgebra for a given collection
of endofunctors built from ‘more basic’ endofunctors on a given category. Thus, this is related to
the second point, namely, that this paper and the literature to which it belongs tell us something
about results from interactive epistemology at large. As an example, we know from Brandenburger
(2003, Proposition 1, p.32) that there exists no belief-complete interactive—possibility—structure
of the form P := 〈(Ti, ℘i)i∈I〉, where ℘i : Ti → P(Θ × T−i). However, strictly speaking, this is
neither a consequence of the functors upon which the functor P acts (in the spirit of Section 4.1),
e.g., P-coalgebras for a functor of the form P(KΘ × Id), nor it is a result specific of interactive
structures built on the functor P (in the spirit of Section 4.2), i.e., P-coalgebras for a functor of
the form P(KΘ × Proj−i), but rather it is a more basic issue concerning the very functor P , as
pointed out in Section 2.2, which shows us that the impossibility runs deeper than the product
structure we typically deal with in interactive epistemology, i.e., the problem is functorial.

5.3.3 Relation to Heinsalu (2014)

Heinsalu (2014) is an important paper in the literature on the construction of large type structures:
beyond addressing the conceptually challenging problem of such a construction for the case of
unawareness in a static setting, this is the first paper belonging to the game-theoretical literature
where coalgebraic methods are employed. Thus, it is essential to identify how this paper is different
from the present one. Now, bypassing the fact that Heinsalu (2014) deals with a static setting
in presence of unawareness, whereas our focus is on a setting with conditioning events without
unawareness, the major difference between these two papers lies in the background work. Heinsalu
(2014) is crucially based on the background work and the results obtained in Viglizzo (2005b) and
the relevant functor for the enterprise is ready-made. On the contrary, here, we have to identify
the properties of the spaces we are dealing with along with the appropriate functors to address the
problem. Indeed, a major point of the present work lies in identifying the peculiarities of product
conditional measurable spaces (in general) and product conditional measurable spaces sharing a
family of conditioning events (in particular), which leads to the definition of a new—tailor-made
for the problem at hand—functor, i.e., the functor ∆CM upon which the functor T := ∆CMPM is
based. As such, the present work, by additionally spelling out the details of the—relevant—proofs
from Viglizzo (2005b) can prove to be a useful introduction to categorical and coalgebraic methods.

6. Applications

On general and conceptual grounds, as hinted in Section 1.1, our construction can be used as a
‘foundation’ for the construction obtained in Battigalli & Siniscalchi (1999, Section 2). In order to
see this point, all the relevant information has already been provided in Footnote 17, whose details
we now spell out. Thus, starting from a σ-algebra over ∆CM (M) as in Definition 2.2, we do provide
a ‘conceptual’ foundation in terms of what a hypothetical individual could consider as a relevant
event. And that is the crucial point: indeed, when we start from topological assumptions, as in
Battigalli & Siniscalchi (1999), with ∆CM (M) endowed with the topology of weak convergence,
it turns out from Kechris (1995, Theorem 17.24, p.112), opportunely adapted to the presence of
conditioning events, that the two σ-algebras are one and the same. Thus, the events a hypothetical
individual can conceive are ‘the same’ and—in a sense—we do not lose anything by working with
topological assumptions in terms of expressibility.78 It is actually in this spirit that the present
construction is used in Meier & Perea (2023)79 for the epistemic characterization of their solution
concept called “Forward and Backward Rationalizability”. And, once more, as already pointed out
in Section 1.1, it is in this spirit that the present construction can be used for endeavours along the
lines of Bergemann & Morris (2005), Dekel et al. (2007), or Battigalli et al. (2011) when working
with conditioning events (similar, for example, to Penta (2015) and Müller (2016)).

However, crucially, as a matter of fact, we do lose something by working with topological
assumptions when in presence of conditioning events, since the present work actually generalizes
the one in Battigalli & Siniscalchi (1999, Section 2), where there is the need to assume an at
most countable family of clopen (i.e., closed and open) conditioning events contrary to the present

78Regarding this notion, see for example Battigalli et al. (2011, Section 1.3).
79With the caveat that the authors employ the term “universal” to refer to what we call here “terminal” (see Meier

& Perea (2023, Section 4.1, p.20)).
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setting where the conditioning events are unrestricted.80 Thus, in the next sections, we provide
examples of how our construction can prove to be useful in various game-theoretical contexts by
exploiting the two relaxations of the assumptions in Battigalli & Siniscalchi (1999, Section 2) we
introduce, namely:

• lack of topological assumptions regarding the conditioning events;

• lack of cardinality assumptions regarding the conditioning events.

Additionally, we also show how the notion of conditioning events we employ proves to be amenable
to various interpretations, a point which turns out to be useful—for example—for the study of
environments in presence of lack of topological assumptions regarding a parameter space and
‘unverifiable’ conditioning events.

Now, whereas we provide examples of endeavours which simply cannot be performed without the
present type structure in light of the need to free the conditioning events from possible restrictions,
one point is in order: the universal type structure built in Section 4 in itself does not provide any
insight on the analyses that can be performed with it. Indeed, recalling the quote in Section 1.1
from Aumann & Heifetz (2002, Section 8, pp.1672–1673), this is a framework that acts as a tool
for potential analyses. However, as such, it can indeed allow to perform new analyses that can
lead to new insights.81

6.1 Topology-Free Conditioning Events

In this section, we show how our lack of topological assumptions on the conditioning events can
prove to be useful in game-theoretical contexts.

For this purpose, we now introduce a minimum of game-theoretical notation. Thus, in partic-
ular, a dynamic game with perfect recall and possibly simultaneous moves in its extensive form
representation82 is a tuple

Γ := 〈I, (Θi, Ai)i∈I , X, Z, (Hi, Si, ui)i∈I〉 (6.1)

where, given that the notation employed here has to be taken as standalone with respect to the
rest of the paper, I now denotes the set of players, and, for every i ∈ I, we let Θi denote the set of
non-epistemic types (e.g., payoff types) of player i and Ai her set of actions. The set X is the set
of histories, where a history x is either the empty sequence 〈∅〉 (i.e., the initial history), or it is a
sequence (a1, . . . , aK), where ak := (aki )i∈I with aki ∈ Ai for every i ∈ I and for every 1 ≤ k ≤ K.
We let A(x) :=

∏
i∈I Ai(x) denote the set of actions available to the players at history x, with

player i active at history x if |Ai(x)| ≥ 2. The set Z ⊆ X is the set of terminal histories. Given
that Hi denotes the set of information sets of player i with H :=

⋃
i∈I Hi and that we extend

to information sets the notation introduced above of actions available at a history, a strategy of
player i is a function si : Hi →

⋃
h∈Hi Ai(h) such that si(h) ∈ Ai(h), for every h ∈ Hi. We let Si

denote the set of strategies of player i, with S−i :=
∏
j∈I\{i} Sj and S :=

∏
j∈I Sj . Also, we let

S(h) denote the set of strategy profiles that allow information set h ∈ H, with Si(h) := πSiS(h)
and S−i(h) := πS−iS(h). Finally, given that Ξi := Θi × Si, with Ξ−i, Ξ, and Ξ−i(h) accordingly
defined as above, we let ui ∈ <Ξ be a Bernoulli (unique up to positive affine transformation) utility
function.

Now, our construction covers the game-theoretical setting described above by freeing it from
the necessity of working only with clopen conditioning events. Indeed, given that we let (Ξ,ΣΞ)
be the relevant measurable space of interest, in the present context, we identify a player i’s set of
conditioning events (topologically unrestricted) as the collection of sets Ξ−i(h), for every h ∈ Hi,
i.e.,

Ci := { Ξ−i(h) | h ∈ Hi } ,
80See Section 5.1.3 for the details behind the need for these assumptions in Battigalli & Siniscalchi (1999) and

our possibility of dropping them altogether.
81We are grateful to an anonymous referee for having pointed out the need to further clarify this point.
82See Osborne & Rubinstein (1994, Definition 200.1, Chapter 11.1.2) for a similar definition (under a different

name), with the caveat that the latter does not explicitly allow for simultaneous moves (see Osborne & Rubinstein
(1994, Definition 200.1, Chapter 6.3.2) for the corresponding extension).
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with CΞ :=
∏
i∈I Ci. Thus, building the universal type structure on the conditional measurable

space (Ξ,ΣΞ, CΞ), we can capture a situation where a player i has beliefs over her own strategies and
non-epistemic types for every possible information set in the game, including those where she is not
active. Now, if we additionally want to work with a type structure where every player i has beliefs
only over her domain of uncertainty Ξ−i and these beliefs arise only at those information set where
she is active, i.e., those information sets belonging to Hi, we simply have to ‘carve out’ from the
previously obtained universal type structure the corresponding belief-closed type structure where
the only conditioning events are those in Ci and the only relevant domain of uncertainty is given by
Ξ−i, for every i, where a belief-closed type structure83 of a given type structure T := 〈(Ti, βi)i∈I〉
is a type structure T̃ := 〈(T̃i, β̃i)i∈I〉 such that supp β̃i,C(t̃i) ⊆ Ξ−i × T̃−i, for every i ∈ I, C ∈ Ci,
and t̃i ∈ T̃i with T̃i ⊆ Ti. As a result, we would obtain, as mentioned above, a belief-closed type
structure of the original one, which—nonetheless—would be itself universal in its own rights given
the imposed restrictions.

Having a framework that allows to deal with the potential presence of topologically unrestricted
conditioning events is particularly important because, as Battigalli & Tebaldi (2019, Section 5.6,
p.758) point out, working with clopen conditioning events in the spirit of Battigalli & Siniscalchi
(1999, Section 2) can be restrictive in certain applications. For example, given a player i ∈ I and
assuming that Θi is uncountable and that player i obtains a signal regarding θ−i ∈ Θ−i, even if
the signal is discrete, it is not necessarily the case that Ξ−i(h) is clopen for a given information
set h ∈ Hi.84

In particular, the present construction can prove to be a crucial tool in psychological game
theory. Indeed, as pointed out in Section 1.1, this is a field where dynamic strategic interactions
are of special interest (as argued in Battigalli & Dufwenberg (2009, Section 2)) and where infinite
hierarchies of beliefs play a fundamental role in light of the fact that the utility functions of
the players depend on—possibly higher order—beliefs of their co-players. Thus, for example, in
Battigalli & Tebaldi (2019, Section 5.6, p.758), it is sketched a situation where, given two players i
and j involved in a face-to-face interaction, there could be observable features of j that may signal
j’s first-order beliefs to player i. Thus, letting µ1

j denote a first-order belief of j, in this scenario,
the tuple (θj , sj , µ

1
j ) compatible with a given information set in the dynamic game corresponding

to the interaction under scrutiny may not be clopen. As such, no formal analysis of this scenario
could be performed without relying on the construction developed here, which allows to drop the
topological assumptions regarding the conditioning events altogether.

6.2 Uncountability of the Conditioning Events

Having shown how the lack of topological assumptions on the conditioning events can be useful,
we now discuss possible endeavours where it is the lack of cardinality assumptions on the family
of conditioning events that is going to be crucial.

In particular, we focus on how the present construction can be used in the context of epistemic
game theory. For this purpose, it has to be recalled that the notion of Rationality and Common
Strong Belief in Rationality (henceforth, RCSBR) introduced in Battigalli & Siniscalchi (2002,
Section 4.2, p.372) is the epistemic solution concept that characterizes Strong Rationalizability85

of Pearce (1984, Definition 9, p.1042) and Battigalli (1997, Definition 2, p.46) in a belief-complete
type structure. This is particularly appealing since Strong Rationalizability is considered a non-
equilibrium based solution concept that captures forward induction reasoning predictions.86

Recently, two papers have profitably employed RCSBR and Strong Rationalizability in applica-
tions: in particular, in Friedenberg (2019), RCSBR is used to study behavior in bargaining, while

83The following notion is a translation in the framework of type structures of Mertens & Zamir (1985, Definition
2.15, p.12). Battigalli et al. (Work in Progress) refer to these constructs as self-evident events.

84See the similar discussion in De Vito (2023, Section 6).
85Alternatively called “Extensive-Form Rationalizability” (as, for example, in Battigalli & Siniscalchi (2002, Def-

inition 5, p.373)). Here, we adopt a terminology used for example in Battigalli & Siniscalchi (2003), which has the
virtue of distinguishing this one from other forms of Rationalizability that can be implemented in the analysis of
dynamic games represented in their extensive-form (i.e., Initial (or Weak) Rationalizability à la Ben-Porath (1997),
Backward Rationalizability à la Penta (2015), or Forward and Backward Rationalizability à la Meier & Perea
(2023)).

86See Govindan & Wilson (2009) for an analysis of forward induction in the context of equilibrium-based solution
concepts.
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Strong Rationalizability is employed in Guo & Shmaya (2021, Proposition 2, p.495) to ‘refine’
the results obtained via Bayes Nash Equilibrium in the study of the behavior of a platform that
provides probabilistic forecasts to a customer in presence of costly miscalibration. Crucially with
respect to our endeavour, both papers point out, respectively, in Friedenberg (2019, Remark A.1,
pp. 1855–1856) and Guo & Shmaya (2021, Section 4.2, p.494), a technical limitation of RCSBR
and Strong Rationalizability, namely that both solution concepts are defined for an at most count-
able family of conditioning events, which are information sets in Friedenberg (2019) and messages
in Guo & Shmaya (2021). Now, the present work does not provide an answer to solve the issue
just mentioned. However, it is not actually possible to provide an answer to this very issue without
the present work.

Indeed, in light of its universality properties, the Universal Type Structure of Battigalli &
Siniscalchi (1999) is the type structure that is employed to obtain the behavioral predictions
corresponding to RCSBR when no a priori assumptions are made on the infinite hierarchies of
beliefs held by the players, where—in particular—it is its belief-completeness that is typically
exploited for this purpose (as in Battigalli & Siniscalchi (2002, Proposition 6, p.373)). However,
that object cannot deal with uncountably many conditioning events. Thus, with respect to this
point, our construction can be fruitfully used as the epistemic type structure that is going to be the
main building block for a definition of RCSBR based on possibly uncountably many conditioning
events, which, given an appropriate definition of Strong Rationalizability (for possibly uncountably
many conditioning events), could actually epistemically characterize the aforementioned new notion
of Strong Rationalizability exploiting standard arguments in epistemic game theory based on the
belief-completeness of this type structure. This, in turn, would lead—among other things—to the
possibility of properly addressing the points (described above) raised in Friedenberg (2019, Remark
A.1, pp. 1855–1856) and Guo & Shmaya (2021, Section 4.2, p.494).

6.3 Nature of the Conditioning Events

In both Section 6.1 and Section 6.2, we consider conditioning events as observable events (e.g.,
information sets) belonging to a dynamic game. However, as natural as this is, interestingly, this
is not the only way in which we can interpret our abstract conditioning events. Thus, with respect
to this point, as a case study we focus on Guo & Yannelis (2022), where an analysis of belief-free
full implementation in the spirit of Bergemann & Morris (2009) and Bergemann & Morris (2011)
is performed in presence of possible coalitions, with the understanding that a coalition can be an
example of a conditioning event, and—incidentally—it is also an example of how our topology-free
construction with unrestricted conditioning events can be a foundation for ‘robustness’ endeavours
in the spirit of Bergemann & Morris (2005) when in presence of conditioning events and—in
particular—counterfactual reasoning.87

To see this, the following is—modulo notation and terminology—the framework of Guo &
Yannelis (2022, Section 2, pp.555–556), where a payoff environment is a tuple

E := 〈I,X,A, (Θi, ui)i∈I〉

with I being a set of agents, X a set of feasible deterministic outcomes, A := ∆(X) a set of
feasible outcomes, whereas Θi is the space of payoff types of player i, with Θ :=

∏
j∈I Θj , and

ui : A×Θ→ < is her Bernoulli (unique up to positive affine transformation) utility function. Given
a payoff environment E , an information structure appended on E is a tuple Y := 〈(Yi, ςi, $i)i∈I ,
where, for every i ∈ I, Yi is agent i’s information space, ςi : Yi → Θi is her payoff type function,
and $i : Yi → ∆(Y−i) is her belief function.88 Finally, to capture the presence of coalitions and
corresponding beliefs of a player i, given that I := 2I \ {∅} denotes the set of coalitions and that

$i,J(yi)
(
yS\{i}

)
:= margYS\{i} $i(yi)(y−i),

where J ∈ I with i ∈ J and y := (yi)i∈I ∈ Y (with marg denoting the marginal operator as
canonically defined), a belief revising rule specifies a posterior belief $i(yi)(y−i) ∈ ∆(Y−i) with
$i,J(yi)(yJ\{i}) = 1 whenever $i,J(yi)

(
yJ\{i}

)
= 0, where the posterior belief is defined via the

Bayes rule (i.e., Axiom (C3) in Definition 2.1) whenever $i,J(yi)
(
yJ\{i}

)
> 0.

87We would would like to thank the editor for suggesting this application.
88In Guo & Yannelis (2022, Section 2, p.556), the authors actually use the expression “type structure” to refer to

this object and use Ti to denote the type space of an arbitrary player i. Here, we opt to call this object “information
structure” with Yi being agent i’s information space to avoid an overloading of the previous expressions and notation.
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Now, it turns out that our construction in Section 4.2 allows to obtain the topology-free uni-
versal type structure in presence of unrestricted conditioning events T ∗ := 〈(T ∗i , β∗i )i∈I〉 for the
setting just described, where an arbitrary type structure T is essentially equivalent to an infor-
mation structure Y given appropriate restrictions. Thus, in particular, given that CI := I with
PI := KI ×KΘ ×Proj−i, we need to define the new functor C := ∆CIPI , i.e.,

C := ∆CIPI = ∆CI (KI ×KΘ ×Proj−i),

where the appropriate definitions regarding the way in which the functor acts on objects and
morphisms follow the path described in Section 4.2, which, as a result, allows us to obtain a belief
function

β∗i := (β∗i,J)J∈I : Ti → ∆I(I ×Θ× T−i).

Given the steps sketched above, it remains to carve out (in the spirit of Section 6.1) the result-
ing structure, a belief-closed type structure with the desired properties which is universal in its
own rights given these properties, where—in particular—we have to impose that β∗i is such that
margJ β

∗
i,J(ti) = δJ and margΘi β

∗
i,J(ti) = δ{θi} for a θi ∈ Θi, for every ti ∈ Ti and J ∈ I, where

δJ and δ{θi} denote the Dirac measure as canonically defined. Indeed, this delivers exactly what
we want in light of the obvious relation between Y := 〈(Yi, ςi, $i)i∈I and an arbitrary belief-closed
type structure T := 〈(Ti, βi)i∈I〉 with βi defined along the lines of β∗i above.

One natural question is why the type structure built here should be used in the context presented
in this section. Now, the reason lies in a point which overlaps with the issue presented in Section 6.2
concerning the cardinality of the set of conditioning events: indeed, as soon as the set of agents I
in E is uncountable, it becomes crucial to use a construction along the lines of the present one.

Appendices

A. Category Theory Background

In this section, for self-containment reasons, we provide an introduction to those elements of
category theory that we need for our purposes. Thus, first of all, we define what a category
actually is.

Definition A.1 (Category). A category C consists of the following data:

• a collection of objects, denoted by Ob(C);

• for every A,A′ ∈ Ob(C), a collection of morphisms (or arrows) from A to A′, denoted by
C(A,A′);

• for every A,A′, A′′ ∈ Ob(C), a composition law

C(A,A′)× C(A′, A′′)→ C(A,A′′),

where the composite of f ∈ C(A,A′) and f ′ ∈ C(A′, A′′) is denoted f ′ ◦ f ;

• for every A ∈ Ob(C), a morphism idA ∈ C(A,A), called the identity on A.

These data satisfy the following axioms:

• associativity: for every f ∈ C(A,A′), f ′ ∈ C(A′, A′′), f ′′ ∈ C(A′′, A′′′),

(f ′′ ◦ f ′) ◦ f = f ′′ ◦ (f ′ ◦ f);

• identity: for every f ∈ C(A,A′),

f ◦ idA = f = idA′ ◦ f.

Having introduced the notion of category, it is typical to provide actual examples of categories,
since it could be stated that one of the major points of embracing a ‘categorical’ approach is the
fact that it is possible to identify properties shared by seemingly exceedingly different constructs.
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Example A.1 (Examples of Categories). We now present two examples of categories that
show how flexible Definition A.1 actually is.

• The category Set is the category whose objects are sets and whose morphisms are functions
between sets. Relevant for our purposes, given A,A′ ∈ Ob(Set), we have A×A′ ∈ Ob(Set).

• The category Top is the category whose objects are topological spaces and whose morphisms
are continuous functions between topological spaces. �

Definition A.2 (Subcategory). Given a category C, a subcategory S of C consists of:

• a subclass Ob(S) of Ob(C) and

• a subclass S(A,A′) of C(A,A′)

such that S is closed under composition and identities. A subcategory is full if S(A,A′) = C(A,A′),
for every A,A′ ∈ Ob(S).

Given two categories, it is possible to have morphisms between the two. The next definition
captures exactly what are the properties that these morphisms, called functors, need to satisfy in
order to be ‘well-behaved’.

Definition A.3 (Functor). Given two categories C and C′, a functor Φ : C→ C′ between C and
C′ consists of:

• a morphism Ob(C)→ Ob(C′), written A 7→ Φ(A);

• for every A,A′ ∈ Ob(C), a morphism

C(A,A′)→ C′(Φ(A),Φ(A′)),

written f 7→ Φ(f).

These data satisfy the following axioms:

AC) Φ(f ′ ◦ f) = Φ(f ′) ◦Φ(f), with f ∈ C(A,A′) and f ′ ∈ C(A′, A′′),

AI) Φ(idA) = idΦ(A), for every A ∈ Ob(C).

The notion of functor captures the crucial idea of functoriality. Thus, given two categories C
and C′, if we define a morphism Φ between them and we prove that Φ actually is a functor, i.e.,
it satisfies Axioms (AC) and (AI), then it turns out that Φ does not simply act on the elements
Ob(C), but also on its morphisms in an appropriate way.89

Example A.2 (Product Categories & Projection Functors). Given a product category∏
λ∈Λ Cλ, the projection functor Projλ is the functor defined as

• (Aλ)λ∈Λ 7→ Aλ, for every (Aλ)λ∈Λ ∈ Ob
(∏

λ∈Λ Cλ
)
,

• (fλ)λ∈Λ 7→ fλ, for every (fλ)λ∈Λ ∈ Cλ
(
(Aλ)λ∈Λ, (A

′
λ)λ∈Λ

)
,

for every λ ∈ Λ. Now, let Set2 := Set × Set and assume that A,A′ are exactly the same sets
considered in Example A.1. It is important to observe that A × A′ ∈ Ob(Set) is not the same
as A × A′ ∈ Ob(Set) × Ob(Set) since the two expressions capture objects belonging to different
categories. �

In this paper, we focus on a specific class of functors, namely, those functors that map a category
to itself.

89Regarding this notion, see the discussion (and the examples) in Jacobs & Rutten (1997, Section 4).
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Definition A.4 (Endofunctor). Given a category C, an endofunctor on C is a functor Φ : C→
C.

Example A.3 (Three Endofunctors). We now provide three examples of endofunctors: the
first two are phrased in rather abstract terms and are extensively used in our construction, while
the third is an example of a functor in the category Set.

• Given an arbitrary category C, the identity (endo)functor Id : C→ C is defined as Id(A) := A,
for every A ∈ Ob(C), and Id(f) := f , for every f ∈ C(A,A′), with A,A′ ∈ Ob(C);

• Given an arbitrary category C, the constant endofunctor given X, denoted KX : C → C, is
defined as KX(A) := X, for every A ∈ Ob(C), and KX(f) := idX , for every f ∈ C(A,A′), with
A,A′ ∈ Ob(C).

• Building on the category Set, we now provide an example of an endofunctor on Set. Thus, let
P : Set→ Set be defined as:

– regarding objects, P(A) := P(A), for every A ∈ Ob(Set), with P denoting the power set;

– regarding morphisms,
P(f) : P(A)→ P(A′)

such that P(f)(B) := f(B), for every f ∈ Set(A,A′) and B ∈ P(A).

The resulting morphism is the so-called power set (endo)functor.90 �

Having established the setting above, it is possible to define when two objects in a given category
are—in a sense to be precisely defined—the same. The two definitions that follow accomplish
exactly this objective.

Definition A.5 (Isomorphism). Given a category C and objects A,A′ ∈ Ob(C), f ∈ C(A,A′)
is an isomorphism if there exists a morphism f ′ ∈ C(A′, A) such that the following diagram

A A′ A A′
f

f ′◦f=idA

f ′

f◦f ′=idA′

f

commutes.

Definition A.6 (Isomorphic Objects). Given a category C and objects A,A′ ∈ Ob(C), A and
A′ are isomorphic, denoted A ∼= A′, if there exists an isomorphism between A and A′.

It is the existence of a special kind of objects in a category, namely, the so-called terminal ones,
that plays a major role in this paper.

Definition A.7 (Terminal Object). Given a category C, an object 1 ∈ Ob(C) is terminal if for
every A ∈ Ob(C) there exists a unique morphism ! ∈ C(A,1) such that ! : A→ 1, i.e., A 1! ,
for every A ∈ Ob(C).

We close this section by introducing the missing notions from category theory that are needed
for the purpose of our construction. Thus, in particular, in the following we take an index set Λ
and we treat it as a category91

90For completeness, this is called the covariant power set functor: see Leinster (2014, Chapter 1.2, p.22) for an
explanation of this terminology.

91Technically, this is a small category, i.e., a category whose both objects and morphisms form a set, i.e., not a
class (see Leinster (2014, Chapter 3.2, p.75) for the notion of small category and Jech (2006, Chapter 1, pp.5–6) for
the notion of class in set theory). Thus, the set N can be taken as the index set.
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Definition A.8 (Diagram). Given an index set Λ and an arbitrary category C, a functor D from
Λ to C is a diagram.

Definition A.9 (ωop-Chain for the Endofunctor Φ). Given a category C and an endofunctor
Φ on C, an ωop-chain on the endofunctor T is a diagram of the form

1 Φ1(1) Φ2(1) . . . .! Φ1! Φ2!

Definition A.10 (Cone). Given an index set Λ, an arbitrary category C, and a diagram D from

Λ to C, a cone92 on D is an object A ∈ Ob(C) together with a family of maps
(
A Dλ

)
λ∈Λ

,
fλ

such that the following diagram commutes

A

Dλ Dλ′

fλ f ′λ

Du

for every λ′ u−→ λ.

Definition A.11 (Limit). A limit L is a cone
(
L Dλ

)
λ∈Λ

fλ with the property that there

exists a unique morphism A L
f such that πλ ◦ f = fλ, for every λ ∈ Λ.93

Definition A.12 (Preservation of Limits by Functors). A functor Φ preserves limits if, given

a limit
(
L Dλ

)
λ∈Λ

,
fλ we have that

(
ΦL ΦDλ

)
λ∈Λ

Φfλ is a limit.

B. Measure-Theoretic Results

We recall that, given a measurable space (M,ΣM ), a π-system is a nonempty family of subsets
D ⊆ P(M) that is closed under finite intersections. The next result is an immediate consequence
of Dynkin’s π–λ Lemma94 applied to all the conditioning events in CM .

Lemma B.1. Given a product conditional measurable space (M ×X,ΣM ⊗ΣX , CM ), where ΣM ⊗
ΣX := σ(D) with D an arbitrary π-system, and two CPSs ν, ν′ ∈ ∆CM (M × X), if ν(D|C) =
ν′(D|C), for every D ∈ D and C ∈ CM , then ν(E|C) = ν′(E|C), for every E ∈ σ(D) and C ∈ CM .

The next remark is an analog of Viglizzo (2005b, Lemma 2, p.396), which in turn is in the
spirit of Heifetz & Samet (1998, Equation 3.2, p.330).

Remark B.1. Given a conditional measurable space (M,ΣM , CM ), two product conditional mea-
surable spaces (M ×X,ΣM ⊗ΣX , CM ) and (M × Y,ΣM ⊗ΣY , CM ) sharing CM , and a measurable
function f ∈ (M × Y )(M×X),

γpC
(
f−1(E)

)
= f̂−1

(
γpC(E)

)
,

for every E ∈ ΣM×Y , C ∈ CM , and p ∈ [0, 1].

Finally, the next lemma is a version of Heifetz & Samet (1998, Lemma 4.5, p.334) which takes
into account the presence of conditioning events.

92See Leinster (2014, Chapter 5.1, p.118) for the definition of cone.
93As usual, here, πλ denotes the projection operator.
94See Aliprantis & Border (2006, Lemma 4.10).
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Lemma B.2. Given a product conditional measurable space (M×X,ΣM⊗ΣX , CM ) and an algebra
AM×X such that ΣM×X := σ(AM×X), if

A∆CM (M×X) := σ
(
{ ξpC(E) | E ∈ AM ⊗AX , p ∈ [0, 1], C ∈ CM }

)
on ∆CM (M ×X), then A∆CM (M×X) = Σ∆CM (M×X).

Proof. Observe that the extension of Definition 2.2 to ∆CM (M ×X), i.e., Σ∆CM (M×X), coincides
with the extension of Definition 2.2 to [∆(M ×X)]CM , which is a collection of copies of ∆(M ×X).
Hence, the result follows from Heifetz & Samet (1998, Lemma 4.5, p.334) applied to [∆(M ×
X)]{C} ≡ ∆(M ×X), for every C ∈ CM . �

C. Proofs of Section 4

Proof of Lemma 3. We establish the result by proving that

πn ◦ hκ = πn ◦ hκ
′
◦ µ (C.1)

proceeding inductively over n ∈ N, first by considering the following diagram

S S ′

P

Tn(1)

µ

hκ

hκn

hκ
′

hκ
′
n

πn

and observing that Equation (C.1) is equal to hκn = hκ
′

n ◦ µ from Definition 4.6.

• (n = 0) We have that hκ
′

0 ◦ µ =!S′ ◦ µ =!S = hκ0 .

• (n ≥ 0) Assume that the result has been established for n, i.e., hκn = hκ
′

n ◦ µ. Thus, we have
that

hκ
′

n+1 ◦ µ = Thκ
′

n ◦ κ′ ◦ µ

= Thκ
′

n ◦Tµ ◦ κ

= T(hκ
′

n ◦ µ) ◦ κ
= Thκn ◦ κ
= hκn+1,

that is made perspicuous by the following diagram

S S ′ Tn(1)

T(S) T(S ′) Tn+1(1)

µ

κ

hκn+1 κ′ hκ
′
n+1

hκ
′
n

Tµ

Thκn

T
(
hκ
′
n ◦µ

)
Thκ

′
n

Tn!

that commutes.

Thus, what is written above establishes the result. �
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Proof of Lemma 4. We let ζ+ : Z → PT be defined as πT
n ζ+ = πn+1, for every n ∈ N. We prove

that πT
n ζ+κ = πT

n h
κ
Tκ. Hence, we have that

πT
n ◦ hκT ◦ κ = Thκn ◦ κ

= hκn+1

= πn+1 ◦ hκ

= πT
n ◦ ζ+ ◦ hκ.

Thus, this establishes that ζ+h
κ = hκTκ along with the fact that ζ+(Z ) ⊆ ZT. Concerning the

measurability of ζ+, it is enough to prove that (ζ+)−1(E) ∈ ΣZ for an arbitrary E := (πT
n )−1(En),

where En ∈ ΣTn+1(1), since such sets generate the σ-algebra on ZT. Thus, this is immediate, since

(ζ+)−1(E) = (ζ+)−1
(

(πT
n )−1(En)

)
= (πT

n ◦ ζ+)−1(En)

= (πn+1)−1(En),

where the set in the last equation is measurable, since En ∈ ΣTn+1(1). �

To establish the following lemma, we need three new pieces of notation. First of all, given that

πT
n : ZT → Tn+1(1) := ∆CM (M ×Tn(1)),

we let πT
n,C denote the corresponding projection of the function on [∆(M ×Tn(1))]{C}, for every

C ∈ CM . In second place, we let νC := ν(·|C). Finally, for every ` < n with `, n ∈ N, let
ρn` : PMTn(1)→ PMT`(1) be defined as

ρn` := PMT`! ◦PMT`+1! ◦ · · · ◦PMTn−1!,

i.e., the following diagram

PMT`(1) PMT`+1(1) . . . PMTn(1)
PMT`! PMT`+1! PMTn−1!

ρn`

commutes, with ρnn = idPMTn(1), for every n ∈ N.

Lemma C.1. There exists a measurable morphism

ζ∆CMPM := (ζ∆CPM )C∈CM : Z∆CMPM → ∆CM (ZPM ) (C.2)

such that:

1) ζ∆CMPM ◦ h
κ
∆CMPM

= ∆CMhκPM , for every T-coalgebra C := 〈S ,κ〉;

2) ∆CMπPM
n ◦ ζ∆CM = π∆CMPM

n , for every n ∈ N.

Before proceeding with the proof of Lemma C.1, due to the fact that it is going to be used in
what follows, it is worth stressing the notational convention implicit in Equation (C.2) according
to which ζ∆CPM essentially stands for the notationally heavier ζ∆CMPM ,C with C ∈ CM arbitrary.

Proof of Lemma C.1. The proof proceeds as follows: first, we define the morphism to then establish
its measurability. It should be recalled that T := ∆CMPM , a point which we occasionally exploit
to lighten the notation.
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• Definition: Given that ΣZPM
is generated by the family of sets

G :=
{
E
∣∣∣ ∃n ∈ N, En ∈ ΣM×Tn(1) : E =

(
πPM
n

)−1
(En)

}
,

where En ∈ ΣM×Tn(1) is such that E =
(
πPM
n

)−1
(En), we define ζ∆CMPM for the elements of

G to then extend the definition to the elements of ΣZPM
. Thus, let z ∈ ZT be arbitrary and let

ζ∆CMPM (z)(E) := πT
n (z)(En),

i.e., by exploiting the notation set forth in Equation (C.2), ζ∆CPM (z)(E) := πT
n,C(z)(En), for

every C ∈ CM and for every En ∈ G.95 To see that the definition does not depend on the choice
of an n ∈ N, let C := 〈S ,κ〉 be an arbitrary T-coalgebra, let ν ∈ ∆CM (M × S) be such that
hκT(ν) = z , and let C ∈ CM be arbitrary. Thus, we have that

ζ∆CPM (z)(E) := πT
n,C(z)(En)

= πT
n,C

(
hκT,C(νC)

)
(En)

=
(
Thκn,C

)
(νC)(En)

=
(
∆CMPMh

κ
n,C

)
(νC)(En)

= νC

((
PMh

κ
n,C

)−1
(En)

)
= νC

((
hκPM ,C

)−1(
(πPM
n )−1(En)

))
= νC

((
hκPM ,C

)−1
(E)
)

=
(
∆CMhκPM ,C

)
(νC)(E),

where this derivation shows at once that the definition is independent of the natural number
n ∈ N we started with and that

ζ∆CMPMh
κ
T,C(z)(E) =

(
∆CMhκPM ,C

)
(νC)(E),

for every E ∈ G. Now, we extend the definition to every F ∈ ΣZPM
by setting

ζ∆CPM (z)(F ) :=
(
∆CMhκPM ,C

)
(νC)(F ), (C.3)

for every C ∈ CM . We now show that Equation (C.3) is well-defined. Hence, letting ν′, ν′′ ∈
∆CM (M × S) be arbitrary with z = hκT(ν′) = hκT(ν′′), it follows that ζ∆CMPM

(
hκT(ν′)

)
and

ζ∆CMPM

(
hκT(ν′′)

)
agree on all the elements of G. Thus, for every ` ≤ n, we have

(πPM
n )−1(En) ∩ (πPM

` )−1(E`) = (πPM
n )−1

(
ρ−1
n` (E`) ∩ En

)
.

This implies that G is a π-system, which in turns implies by Lemma B.1 that the CPSs have to
agree on all measurable subsets.

• Measurability: Recalling Equation (4.16) as a visual aid, for every En ∈ ΣM×Tn(1) and for every
C ∈ CM , we have that(

∆CMπPM
n ◦ ζ∆CMPM

)
(z)(En) = ζ∆CMPM (z)

(
(πPM
n )−1(En)

)
= πT

n (z)(En).

Hence, from Lemma B.2, it is enough to establish that

(ζ∆CPM )−1
((
γpC(πPM

n )−1(En)
))
,

95Alternatively, we could have defined ζ
∆CMPM

(z)(E) as

ζ
∆CMPM

(z)(E|C) := πT
n (z)

(
π

PM
n (E)

∣∣∣C) .
We would like to thank an anonymous referee for this this point.
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for every C ∈ CM and En ∈ ΣM×Tn(1). Thus, we have that

(ζ∆CPM )−1
(
γpC
(
(πPM
n )−1(En)

))
:= (ζ∆CPM )−1

((
∆CMπPM

n

)−1(
γpC(En)

))
=
(
∆CMπPM

n ◦ ζ∆CPM

)−1
(
γpC(En)

)
=
(
πT
n

)−1
(
γpC(En)

)
,

where the first line is motivated by Remark B.1 and the last set is measurable (with the equality
motivated by the fact that we established Condition (2)).

Thus, what is written above establishes the result. �

Lemma C.2. There exists a measurable morphism

ζPM : ZKM×Id → ZKM
× ZId

such that:

1) ζPM ◦ hκKM×Id = hκKM
× hκId, for every T-coalgebra C := 〈S ,κ〉;

2)
(
πKM
n × πId

n

)
◦ ζPM = πKM×Id

n , for every n ∈ N.

Proof. This result is an immediate consequence of Viglizzo (2005b, Lemma 6, p.401) with the
binary product applied to the functors KM and Id. �

We can now provide the proof of Lemma 5, which turns out to be a straightforward application
of the previous lemmata.

Proof of Lemma 5. In light of the fact that T := ∆CMPM = ∆CM (KM × Id), for every functor
G ∈ {T,PM ,KM , Id} we define an appropriate measurable morphism ϕG satisfying Conditions
(1)–(2), i.e., there exists a measurable morphism ϕG : ZG → G(Z ) such that:

1) ϕG ◦ hκG = Ghκ, for every T-coalgebra C := 〈S ,κ〉;

2) Gπm ◦ϕG = πG
n , for every n ∈ N.

The morphisms ϕG with G ∈ {T,PM ,KM , Id} are established in what follows.

• Functor Id: We let ϕId := idZ , which is measurable and trivially satisfies Conditions (1)–(2),
with ζId := ϕId.

• Functor KM : We let ϕKM
:= πKM

0 , which is measurable.

– Regarding Condition (1), we let C := 〈S ,κ〉 be an arbitrary T-coalgebra and we observe that

ϕKM
◦ hκKM

= πKM
0 ◦ hκKM

= (πKM
n ◦ hκKM

)n∈N

= KMh
κ,

thus, establishing the condition.

– Regarding Condition (2), we have that

KMπn ◦ϕKM
= KMπn ◦ πKM

0

= idM ◦ πKM
0

= πKM
n .

for every n ∈ N, thus, establishing the condition.

Finally, we set ζKM
:= ϕKM

.
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• Functor PM : From Lemma C.2, we set

ϕPM :=
(
πKM

0 , idZ
)
ζPM ,

: =
(
ζKM

, ζId

)
ζPM ,

which is a measurable morphism that satisfies Conditions (1)–(2) so that the following diagram

PMS = M × S

ZPM ZKM
× ZId M × Z

PMTn(1) = M ×Tn(1)

hκPM hκPM

PMh
κ
Id

ζPM

π
PM
n

(
π

KM
0 ,idZ

)
π

PM
n PMπn

commutes.

• Functor T: Recalling that T := ∆CMPM , from Lemma C.1, we set

ϕ∆CMPM :=
(
∆CMϕPM

)
ζ∆CMPM ,

which is a measurable morphism that satisfies Conditions (1)–(2) so that the following diagram

∆CMPMS

Z∆CMPM ∆CM (ZPM ) ∆CM (M × Z )

∆CMPMTn(1)

hκ
∆CM PM

∆CM hκPM

∆CMPMh
κ
Id

ζ
∆CM PM

π
∆CM PM
n

∆CMϕPM

∆CM π
PM
n

∆CMPMπn

commutes as well.

As a result, for every functor G ∈ {T,PM ,KM , Id} both Conditions (1)–(2) are satisfied and, in
particular, we have that the following diagram

Z∆CMPM ∆CM (ZPM ) ∆CM (M × Z )
ζ
∆CM PM

ϕ
∆CM PM

∆CMϕPM

commutes, with

−→
ζ := ϕ∆CMPM

: =
(
∆CMϕPM

)
ζ∆CMPM

: =

(
∆CM

((
πKM

0 , idZ
)
ζPM

))
ζ∆CMPM

: =

(
∆CM

((
ζKM

, ζId

)
ζPM

))
ζ∆CMPM

as in Equation (4.15), thus, establishing the result. �

Proof of Lemma 7. To establish the result, it is enough to prove that hn = πn ◦ h = πn, for every
n ∈ N. Thus, we proceed inductively over n ∈ N.
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• (n = 0) We have h0 = π0 ◦ h =! = π0 ◦ idZ .

• (n ≥ 1) Assume that the result has been established for n, i.e., hn = πn ◦h = πn. Thus, we have

πn+1 ◦ h = hn+1

= Thn ◦ ζ
= Tπn ◦ ζ

= Tπn ◦
−→
ζ ◦ ζ+

= πT
n ◦ ζ+

= πn+1,

where the second to last equality comes from Lemma 5.

Hence, what is written above establishes the result. �

Proof of Lemma 8. Let C := 〈S ,κ〉 be an arbitrary T-coalgebra.

• Existence: By Lemma 6, hκ is a T-coalgebra morphism.

• Uniqueness: Let µ : S → Z be an arbitrary T-coalgebra morphism. By Lemma 3, we have
h◦µ = hκ and, from Lemma 7, h = idZ . Thus, we have that idZ ◦µ = hκ, from which it follows
that µ = hκ.

Thus, what is written above establishes the result. �

Proof of Lemma 10. Fix a conditional measurable space (Θ,ΣΘ, CΘ) and let T := 〈(Ti, βi)i∈I〉 and
T ′ := 〈(T ′i , β′i)i∈I〉 be two arbitrary type structures appended to it. From Lemma 9, we can treat
them as two T-coalgebras.

• Regarding Condition (1) in Definition 3.2, the functor PΘ ensures that, for every T ∈ Ob(MeasI),
T(T ) implies that there exists a morphism idΘ by definition of T, with ϑ0 = idΘ.

• Regarding Condition (2) in Definition 3.2, observe that, from Definition 2.6, for a T-coalgebra
morphism µ : T → T ′, the following diagram

Ti T ′i

∆CΘ(Θ× T−i) ∆CΘ(Θ× T ′−i)

µi

βi β′i

µ̂±i

commutes, for every i ∈ I. Clearly, this is exactly Condition (2) in Definition 3.2 with (ϑi)i∈I =
µ.

Thus, what is written above establishes the result. �
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